summaryrefslogtreecommitdiff
path: root/src/Total/Encoded/Util.idr
blob: 705d74bfa611cb2028cf53ca279f03ff3f200ba1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
module Total.Encoded.Util

import public Data.Fin
import public Data.List1
import public Data.List.Elem
import public Data.List.Quantifiers
import public Total.Syntax

%prefix_record_projections off

namespace Bool
  export
  B : Ty
  B = N

  export
  True : Term ctx B
  True = Zero

  export
  False : Term ctx B
  False = Suc Zero

  export
  If : Term ctx B -> Term ctx ty -> Term ctx ty -> Term ctx ty
  If t u v = Rec t u (Abs $ wkn v (Drop Id))

namespace Arb
  export
  arb : {ty : Ty} -> Term [<] ty
  arb {ty = N} = Zero
  arb {ty = ty ~> ty'} = Abs (lift arb)

namespace Union
  export
  (<+>) : Ty -> Ty -> Ty
  N <+> N = N
  N <+> (u ~> u') = u ~> u'
  (t ~> t') <+> N = t ~> t'
  (t ~> t') <+> (u ~> u') = (t <+> u) ~> (t' <+> u')

  export
  injL : {t, u : Ty} -> Term [<] (t ~> (t <+> u))
  export
  injR : {t, u : Ty} -> Term [<] (u ~> (t <+> u))
  export
  prjL : {t, u : Ty} -> Term [<] ((t <+> u) ~> t)
  export
  prjR : {t, u : Ty} -> Term [<] ((t <+> u) ~> u)

  injL {t = N, u = N} = Abs' (S Z) id
  injL {t = N, u = u ~> u'} = Abs' (S $ S Z) (\n, _ => App (lift (prjR . injL)) n)
  injL {t = t ~> t', u = N} = Abs' (S Z) id
  injL {t = t ~> t', u = u ~> u'} = Abs' (S Z) (\f => lift injL . f . lift prjL)

  injR {t = N, u = N} = Abs' (S Z) id
  injR {t = N, u = u ~> u'} = Abs' (S Z) id
  injR {t = t ~> t', u = N} = Abs' (S $ S Z) (\n, _ => App (lift (prjL . injR)) n)
  injR {t = t ~> t', u = u ~> u'} = Abs' (S Z) (\f => lift injR . f . lift prjR)

  prjL {t = N, u = N} = Abs' (S Z) id
  prjL {t = N, u = u ~> u'} = Abs' (S Z) (\f => App (lift (prjL . injR) . f) (lift $ arb))
  prjL {t = t ~> t', u = N} = Abs' (S Z) id
  prjL {t = t ~> t', u = u ~> u'} = Abs' (S Z) (\f => lift prjL . f . lift injL)

  prjR {t = N, u = N} = Abs' (S Z) id
  prjR {t = N, u = u ~> u'} = Abs' (S Z) id
  prjR {t = t ~> t', u = N} = Abs' (S Z) (\f => App (lift (prjR . injL) . f) (lift $ arb))
  prjR {t = t ~> t', u = u ~> u'} = Abs' (S Z) (\f => lift prjR . f . lift injR)

namespace Unit
  export
  Unit : Ty
  Unit = N

namespace Pair
  export
  (*) : Ty -> Ty -> Ty
  t * u = B ~> (t <+> u)

  export
  pair : {t, u : Ty} -> Term [<] (t ~> u ~> (t * u))
  pair = Abs' (S $ S $ S Z)
    (\fst, snd, b => If b (App (lift injL) fst) (App (lift injR) snd))

  export
  fst : {t, u : Ty} -> Term [<] ((t * u) ~> t)
  fst = Abs' (S Z) (\p => App (lift prjL . p) True)

  export
  snd : {t, u : Ty} -> Term [<] ((t * u) ~> u)
  snd = Abs' (S Z) (\p => App (lift prjR . p) False)

  export
  mapSnd : {t, u, v : Ty} -> Term [<] ((u ~> v) ~> (t * u) ~> (t * v))
  mapSnd = Abs' (S $ S Z) (\f, p => App' (lift pair) [<App (lift fst) p , App (f . lift snd) p])

  export
  Product : SnocList Ty -> Ty
  Product = foldl (*) Unit

  export
  pair' : {tys : SnocList Ty} -> Term [<] (tys ~>* Product tys)
  pair' {tys = [<]} = arb
  pair' {tys = tys :< ty} = Abs' (S $ S Z) (\p, t => App' (lift pair) [<p, t]) .* pair' {tys}

  export
  project : {tys : SnocList Ty} -> Elem ty tys -> Term [<] (Product tys ~> ty)
  project {tys = tys :< ty} Here = snd
  project {tys = tys :< ty} (There i) = project i . fst

  export
  mapProd :
    {ctx, tys, tys' : SnocList Ty} ->
    {auto 0 prf : length tys = length tys'} ->
    All (Term ctx) (zipWith (~>) tys tys') ->
    Term ctx (Product tys ~> Product tys')
  mapProd {tys = [<], tys' = [<]} [<] = Abs (Var Here)
  mapProd {tys = tys :< ty, tys' = tys' :< ty', prf} (fs :< f) =
    Abs' (S Z)
      (\p =>
        App' (lift pair)
          [<App (wkn (mapProd fs {prf = injective prf}) (Drop Id) . lift fst) p
          , App (wkn f (Drop Id) . lift snd) p
          ])

  replicate : Nat -> a -> SnocList a
  replicate 0 x = [<]
  replicate (S n) x = replicate n x :< x

  replicateLen : (n : Nat) -> SnocList.length (replicate n x) = n
  replicateLen 0 = Refl
  replicateLen (S k) = cong S (replicateLen k)

  export
  Vect : Nat -> Ty -> Ty
  Vect n ty = Product (replicate n ty)

  zipReplicate :
    {0 f : a -> b -> c} ->
    {0 p : c -> Type} ->
    {n : Nat} ->
    p (f x y) ->
    SnocList.Quantifiers.All.All p (zipWith f (replicate n x) (replicate n y))
  zipReplicate {n = 0} z = [<]
  zipReplicate {n = S k} z = zipReplicate z :< z

  export
  mapVect :
    {n : Nat} ->
    {ty, ty' : Ty} ->
    Term [<] ((ty ~> ty') ~> Vect n ty ~> Vect n ty')
  mapVect =
    Abs' (S Z)
      (\f => mapProd {prf = trans (replicateLen n) (sym $ replicateLen n)} $ zipReplicate f)

  export
  Nil : {ty : Ty} -> Term [<] (Vect 0 ty)
  Nil = arb

  export
  Cons : {n : Nat} -> {ty : Ty} -> Term [<] (ty ~> Vect n ty ~> Vect (S n) ty)
  Cons = Abs' (S $ S Z) (\t, ts => App' (lift pair) [<ts, t])

  export
  head : {n : Nat} -> {ty : Ty} -> Term [<] (Vect (S n) ty ~> ty)
  head = snd

  export
  tail : {n : Nat} -> {ty : Ty} -> Term [<] (Vect (S n) ty ~> Vect n ty)
  tail = fst

  export
  index : {n : Nat} -> {ty : Ty} -> (i : Fin n) -> Term [<] (Vect n ty ~> ty)
  index FZ = head
  index (FS i) = index i . tail

  export
  enumerate : (n : Nat) -> Term [<] (Vect n N)
  enumerate 0 = arb
  enumerate (S k) = App' pair [<App' mapVect [<Abs' (S Z) Suc, enumerate k], Zero]

namespace Sum
  export
  (+) : Ty -> Ty -> Ty
  t + u = B * (t <+> u)

  export
  left : {t, u : Ty} -> Term [<] (t ~> (t + u))
  left = Abs' (S Z) (\e => App' (lift pair) [<True, App (lift injL) e])

  export
  right : {t, u : Ty} -> Term [<] (u ~> (t + u))
  right = Abs' (S Z) (\e => App' (lift pair) [<False, App (lift injR) e])

  export
  case' : {t, u, ty : Ty} -> Term [<] ((t ~> ty) ~> (u ~> ty) ~> (t + u) ~> ty)
  case' = Abs' (S $ S $ S Z)
    (\f, g, s =>
      If (App (lift fst) s)
        (App (f . lift (prjL . snd)) s)
        (App (g . lift (prjR . snd)) s))

  Sum' : Ty -> List Ty -> Ty
  Sum' ty [] = ty
  Sum' ty (ty' :: tys) = ty + Sum' ty' tys

  export
  Sum : List1 Ty -> Ty
  Sum (ty ::: tys) = Sum' ty tys

  put' :
    {ty, ty' : Ty} ->
    {tys : List Ty} ->
    (i : Elem ty (ty' :: tys)) ->
    Term [<] (ty ~> Sum' ty' tys)
  put' {tys = []} Here = Abs' (S Z) id
  put' {tys = _ :: _} Here = left
  put' {tys = _ :: _} (There i) = right . put' i

  export
  put : {tys : List1 Ty} -> {ty : Ty} -> (i : Elem ty (forget tys)) -> Term [<] (ty ~> Sum tys)
  put {tys = _ ::: _} i = put' i

  caseAll' :
    {ctx : SnocList Ty} ->
    {ty, ty' : Ty} ->
    {tys : List Ty} ->
    All (Term ctx . (~> ty)) (ty' :: tys) ->
    Term ctx (Sum' ty' tys ~> ty)
  caseAll' (t :: []) = t
  caseAll' (t :: u :: ts) = App' (lift case') [<t, caseAll' (u :: ts)]

  export
  caseAll :
    {ctx : SnocList Ty} ->
    {tys : List1 Ty} ->
    {ty : Ty} ->
    All (Term ctx . (~> ty)) (forget tys) ->
    Term ctx (Sum tys ~> ty)
  caseAll {tys = _ ::: _} = caseAll'

namespace Nat
  export
  IsZero : Term [<] (N ~> B)
  IsZero = Abs' (S Z) (\m => Rec m (lift True) (Abs (lift False)))

  export
  Add : Term [<] (N ~> N ~> N)
  Add = Abs' (S $ S Z) (\m, n => Rec m n (Abs' (S Z) Suc))

  export
  sum : {n : Nat} -> Term [<] (Vect n N ~> N)
  sum {n = 0} = Abs Zero
  sum {n = S k} = Abs' (S Z)
    (\ns => App' (lift Add) [<App (lift head) ns, App (lift (sum . tail)) ns])

  export
  Pred : Term [<] (N ~> N)
  Pred = Abs' (S Z)
    (\m =>
      App' (lift case')
        [<Abs Zero
        , Abs' (S Z) id
        , Rec m
            (lift $ App left (arb {ty = Unit}))
            (App' (lift case')
              [<Abs (lift $ App right Zero)
              , Abs' (S Z) (\n => App (lift right) (Suc n))
              ])
        ])

  export
  Sub : Term [<] (N ~> N ~> N)
  Sub = Abs' (S $ S Z) (\m, n => Rec n m (lift Pred))

  export
  LE : Term [<] (N ~> N ~> B)
  LE = Abs' (S Z) (\m => lift IsZero . App (lift Sub) m)

  export
  LT : Term [<] (N ~> N ~> B)
  LT = Abs' (S Z) (\m => App (lift LE) (Suc m))

  export
  Cond :
    {ctx : SnocList Ty} ->
    {ty : Ty} ->
    List (Term ctx N, Term ctx (N ~> ty)) ->
    Term ctx (N ~> ty)
  Cond [] = lift arb
  Cond ((n, v) :: xs) =
    Abs' (S Z)
      (\t =>
        If (App' (lift LE) [<t, wkn n (Drop Id)])
          (App (wkn v (Drop Id)) t)
          (App (wkn (Cond xs) (Drop Id)) (App' (lift Sub) [<t, wkn n (Drop Id)])))

namespace Data
  public export
  Shape : Type
  Shape = (Ty, Nat)

  public export
  Container : Type
  Container = List1 Shape

  public export
  fillShape : Shape -> Ty -> Ty
  fillShape (shape,  n) ty = shape * Vect n ty

  public export
  fill : Container -> Ty -> Ty
  fill c ty = Sum (map (flip fillShape ty) c)

  export
  fix : Container -> Ty
  fix c = Product [<N, N ~> N, N ~> fill c N]
  --                ^  ^       ^- tags and next positions
  --                |  |- offset
  --                |- pred (number of tags in structure)

  mapShape :
    {shape : Shape} ->
    {ty, ty' : Ty} ->
    Term [<] ((ty ~> ty') ~> fillShape shape ty ~> fillShape shape ty')
  mapShape {shape = (shape, n)} = mapSnd . mapVect

  gmap :
    {0 f : a -> b} ->
    {0 P : a -> Type} ->
    {0 Q : b -> Type} ->
    ({x : a} -> P x -> Q (f x)) ->
    {xs : List a} ->
    All P xs ->
    All Q (map f xs)
  gmap f [] = []
  gmap f (px :: pxs) = f px :: gmap f pxs

  forgetMap :
    (0 f : a -> b) ->
    (0 xs : List1 a) ->
    forget (map f xs) = map f (forget xs)
  forgetMap f (head ::: tail) = Refl

  calcOffsets :
    {ctx : SnocList Ty} ->
    {c : Container} ->
    {n : Nat} ->
    (ts : Term ctx (Vect n (fix c))) ->
    (acc : Term ctx N) ->
    List (Term ctx N, Term ctx (N ~> N))
  calcOffsets {n = 0} ts acc = []
  calcOffsets {n = S k} ts acc =
    let hd = App (lift head) ts in
    let n = App (lift $ project $ There $ There Here) hd in
    let offset = App (lift $ project $ There Here) hd in
    (n, App (lift Add) acc . offset) ::
    calcOffsets
      (App (lift tail) ts)
      (App' (lift Add) [<Suc n, acc])

  calcData :
    {ctx : SnocList Ty} ->
    {c : Container} ->
    {n : Nat} ->
    (ts : Term ctx (Vect n (fix c))) ->
    (acc : Term ctx N) ->
    List (Term ctx N, Term ctx (N ~> fill c N))
  calcData {n = 0} ts acc = []
  calcData {n = S k} ts acc =
    let hd = App (lift head) ts in
    let n = App (lift $ project $ There $ There Here) hd in
    (n, App (lift $ project Here) hd) ::
    calcData
      (App (lift tail) ts)
      (App' (lift Add) [<Suc n, acc])

  export
  intro :
    {c : Container} ->
    {shape : Shape} ->
    Elem shape (forget c) ->
    Term [<] (fillShape shape (fix c) ~> fix c)
  intro {shape = (shape, n)} i = Abs' (S Z)
    (\t =>
      App' (lift $ pair' {tys = [<N, N ~> N, N ~> fill c N]})
        [<App (lift (sum . App mapVect (Abs' (S Z) Suc . project (There $ There Here)) . snd)) t
        , Cond ((Zero, Abs' (S Z) Suc) :: calcOffsets (App (lift snd) t) (Suc Zero))
        , Cond
          (  (Zero,
              Abs
                (App
                  (lift $ put {tys = map (flip fillShape N) c} $
                    rewrite forgetMap (flip fillShape N) c in
                    elemMap (flip fillShape N) i)
                  (App' (lift mapSnd) [<Abs (lift $ enumerate n), wkn t (Drop Id)])))
          :: calcData (App (lift snd) t) (Suc Zero)
          )
        ])

  export
  elim :
    {c : Container} ->
    {ctx : SnocList Ty} ->
    {ty : Ty} ->
    All (Term ctx . (~> ty) . flip Data.fillShape ty) (forget c) ->
    Term ctx (fix c ~> ty)
  elim cases = Abs' (S Z)
    (\t =>
      let tags = Suc (App (lift $ project $ There $ There Here) t) in
      let offset = App (lift $ project $ There Here) (wkn t (Drop $ Drop Id)) in
      let vals = App (lift $ project $ Here) (wkn t (Drop $ Drop Id)) in
      App'
        (Rec tags
          (lift arb)
          (Abs' (S $ S Z) (\rec, n =>
            App
              (caseAll {tys = map (flip fillShape N) c}
                (rewrite forgetMap (flip fillShape N) c in
                 gmap
                   (\f =>
                     wkn f (Drop $ Drop $ Drop Id) .
                     App (lift mapShape) (rec . App (lift Add) (App offset n)))
                   cases) .
               vals)
              n)))
        [<Zero])

  -- elim cases (#tags-1,offset,data) =
  --   let
  --       step : (N -> ty) -> (N -> ty)
  --       step rec n =
  --         case rec n of
  --           i => cases(i) . mapShape (rec . (+ offset n))
  --   in
  --       rec #tags arb step 0