blob: d326c4e52b61cc0a11cf93e51d9a9c926a9aa2af (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
module Core.Declarative
import Core.Context
import Core.Environment
import Core.Name
import Core.Term
import Core.Term.Substitution
import Core.Thinning
import Core.Var
import Data.Nat
public export
data EnvWf : Env sx -> Type
public export
data TypeWf : Env sx -> Term sx -> Type
public export
data TypeConv : Env sx -> Term sx -> Term sx -> Type
public export
data TermWf : Env sx -> Term sx -> Term sx -> Type
public export
data TermConv : Env sx -> Term sx -> Term sx -> Term sx -> Type
data EnvWf where
Lin :
---
EnvWf [<]
(:<) :
EnvWf env ->
TypeWf env (expand t) ->
---
EnvWf (Add env t)
data TypeWf where
SetType :
EnvWf env ->
---
TypeWf env Set
PiType :
TypeWf env f ->
TypeWf (env :< f) g ->
---
TypeWf env (Pi n f g)
LiftType :
TermWf env a Set ->
---
TypeWf env a
data TypeConv where
ReflType :
TypeWf env a ->
---
TypeConv env a a
SymType :
TypeConv env a b ->
---
TypeConv env b a
TransType :
TypeConv env a b ->
TypeConv env b c ->
---
TypeConv env a c
PiTypeConv :
TypeWf env f ->
TypeConv env f h ->
TypeConv (env :< f) g e ->
---
TypeConv env (Pi n f g) (Pi n h e)
LiftConv :
TermConv env a b Set ->
---
TypeConv env a b
data TermWf where
VarTerm :
EnvWf env ->
---
TermWf env (Var i) (index env i)
PiTerm :
TermWf env f Set ->
TermWf (env :< f) g Set ->
---
TermWf env (Pi n f g) Set
AbsTerm :
TypeWf env f ->
TermWf (env :< f) t g ->
---
TermWf env (Abs n t) (Pi n f g)
AppTerm :
TermWf env t (Pi n f g) ->
TermWf env u f ->
---
TermWf env (App t u) (subst g $ sub1 u)
ConvTerm :
TermWf env t a ->
TypeConv env a b ->
---
TermWf env t b
data TermConv where
ReflTerm :
TermWf env t a ->
---
TermConv env t t a
SymTerm :
TermConv env t u a ->
---
TermConv env u t a
TransTerm :
TermConv env t u a ->
TermConv env u v a ->
---
TermConv env t v a
ConvTermConv :
TermConv env t u a ->
TypeConv env a b ->
---
TermConv env t u b
PiTermConv :
TypeWf env f ->
TermConv env f h Set ->
TermConv (env :< f) g e Set ->
---
TermConv env (Pi n f g) (Pi n h e) Set
PiBeta :
TypeWf env f ->
TermWf (env :< f) t g ->
TermWf env u f ->
---
TermConv env (App (Abs n t) u) (subst t $ sub1 u) (subst g $ sub1 u)
PiEta :
TypeWf env f ->
TermWf env t (Pi n f g) ->
TermWf env u (Pi n f g) ->
TermConv (env :< f)
(App (wkn t $ drop (id _) n) (Var Var.here))
(App (wkn u $ drop (id _) n) (Var Var.here))
g ->
---
TermConv env t u (Pi n f g)
AppConv :
TermConv env t u (Pi n f g) ->
TermConv env a b f ->
---
TermConv env (App t a) (App u b) (subst g $ sub1 a)
%name EnvWf envWf
%name TypeWf wf
%name TypeConv conv
%name TermWf wf
%name TermConv conv
-- Environment Equality --------------------------------------------------------
envWfRespEnvEq : EnvWf env1 -> EnvEq env1 env2 -> EnvWf env2
typeWfRespEnvEq : TypeWf env1 a -> EnvEq env1 env2 -> TypeWf env2 a
typeConvRespEnvEq : TypeConv env1 a b -> EnvEq env1 env2 -> TypeConv env2 a b
termWfRespEnvEq : TermWf env1 t a -> EnvEq env1 env2 -> TermWf env2 t a
termConvRespEnvEq : TermConv env1 t u b -> EnvEq env1 env2 -> TermConv env2 t u b
envWfRespEnvEq envWf Base = envWf
envWfRespEnvEq (envWf :< wf) (prf :< eq) =
envWfRespEnvEq envWf prf :<
rewrite sym eq in typeWfRespEnvEq wf prf
typeWfRespEnvEq (SetType envWf) prf = SetType (envWfRespEnvEq envWf prf)
typeWfRespEnvEq (PiType wf wf1) prf =
PiType
(typeWfRespEnvEq wf prf)
(typeWfRespEnvEq wf1 $ prf :< Refl)
typeWfRespEnvEq (LiftType wf) prf = LiftType (termWfRespEnvEq wf prf)
typeConvRespEnvEq (ReflType wf) prf = ReflType (typeWfRespEnvEq wf prf)
typeConvRespEnvEq (SymType conv) prf = SymType (typeConvRespEnvEq conv prf)
typeConvRespEnvEq (TransType conv conv1) prf =
TransType
(typeConvRespEnvEq conv prf)
(typeConvRespEnvEq conv1 prf)
typeConvRespEnvEq (PiTypeConv wf conv conv1) prf =
PiTypeConv
(typeWfRespEnvEq wf prf)
(typeConvRespEnvEq conv prf)
(typeConvRespEnvEq conv1 $ prf :< Refl)
typeConvRespEnvEq (LiftConv conv) prf = LiftConv (termConvRespEnvEq conv prf)
termWfRespEnvEq (VarTerm {i} envWf) prf =
rewrite indexEqIsEq prf i in
VarTerm (envWfRespEnvEq envWf prf)
termWfRespEnvEq (PiTerm wf wf1) prf =
PiTerm
(termWfRespEnvEq wf prf)
(termWfRespEnvEq wf1 $ prf :< Refl)
termWfRespEnvEq (AbsTerm wf wf1) prf =
AbsTerm
(typeWfRespEnvEq wf prf)
(termWfRespEnvEq wf1 $ prf :< Refl)
termWfRespEnvEq (AppTerm wf wf1) prf = AppTerm (termWfRespEnvEq wf prf) (termWfRespEnvEq wf1 prf)
termWfRespEnvEq (ConvTerm wf conv) prf =
ConvTerm
(termWfRespEnvEq wf prf)
(typeConvRespEnvEq conv prf)
termConvRespEnvEq (ReflTerm wf) prf = ReflTerm (termWfRespEnvEq wf prf)
termConvRespEnvEq (SymTerm conv) prf = SymTerm (termConvRespEnvEq conv prf)
termConvRespEnvEq (TransTerm conv conv1) prf =
TransTerm
(termConvRespEnvEq conv prf)
(termConvRespEnvEq conv1 prf)
termConvRespEnvEq (ConvTermConv conv conv1) prf =
ConvTermConv (termConvRespEnvEq conv prf) (typeConvRespEnvEq conv1 prf)
termConvRespEnvEq (PiTermConv wf conv conv1) prf =
PiTermConv
(typeWfRespEnvEq wf prf)
(termConvRespEnvEq conv prf)
(termConvRespEnvEq conv1 $ prf :< Refl)
termConvRespEnvEq (PiBeta wf wf1 wf2) prf =
PiBeta
(typeWfRespEnvEq wf prf)
(termWfRespEnvEq wf1 $ prf :< Refl)
(termWfRespEnvEq wf2 prf)
termConvRespEnvEq (PiEta wf wf1 wf2 conv) prf =
PiEta
(typeWfRespEnvEq wf prf)
(termWfRespEnvEq wf1 prf)
(termWfRespEnvEq wf2 prf)
(termConvRespEnvEq conv $ prf :< Refl)
termConvRespEnvEq (AppConv conv conv1) prf =
AppConv
(termConvRespEnvEq conv prf)
(termConvRespEnvEq conv1 prf)
-- Well Formed Environment -----------------------------------------------------
typeWfImpliesEnvWf : TypeWf env a -> EnvWf env
typeConvImpliesEnvWf : TypeConv env a b -> EnvWf env
termWfImpliesEnvWf : TermWf env t a -> EnvWf env
termConvImpliesEnvWf : TermConv env t u a -> EnvWf env
typeWfImpliesEnvWf (SetType envWf) = envWf
typeWfImpliesEnvWf (PiType wf wf1) = typeWfImpliesEnvWf wf
typeWfImpliesEnvWf (LiftType wf) = termWfImpliesEnvWf wf
typeConvImpliesEnvWf (ReflType wf) = typeWfImpliesEnvWf wf
typeConvImpliesEnvWf (SymType conv) = typeConvImpliesEnvWf conv
typeConvImpliesEnvWf (TransType conv conv1) = typeConvImpliesEnvWf conv
typeConvImpliesEnvWf (PiTypeConv wf conv conv1) = typeConvImpliesEnvWf conv
typeConvImpliesEnvWf (LiftConv conv) = termConvImpliesEnvWf conv
termWfImpliesEnvWf (VarTerm envWf) = envWf
termWfImpliesEnvWf (PiTerm wf wf1) = termWfImpliesEnvWf wf
termWfImpliesEnvWf (AbsTerm wf wf1) = typeWfImpliesEnvWf wf
termWfImpliesEnvWf (AppTerm wf wf1) = termWfImpliesEnvWf wf
termWfImpliesEnvWf (ConvTerm wf conv) = termWfImpliesEnvWf wf
termConvImpliesEnvWf (ReflTerm wf) = termWfImpliesEnvWf wf
termConvImpliesEnvWf (SymTerm conv) = termConvImpliesEnvWf conv
termConvImpliesEnvWf (TransTerm conv conv1) = termConvImpliesEnvWf conv
termConvImpliesEnvWf (ConvTermConv conv conv1) = termConvImpliesEnvWf conv
termConvImpliesEnvWf (PiTermConv wf conv conv1) = termConvImpliesEnvWf conv
termConvImpliesEnvWf (PiBeta wf wf1 wf2) = typeWfImpliesEnvWf wf
termConvImpliesEnvWf (PiEta wf wf1 wf2 conv) = typeWfImpliesEnvWf wf
termConvImpliesEnvWf (AppConv conv conv1) = termConvImpliesEnvWf conv
-- Weakening Preservation ------------------------------------------------------
wknPresTypeWf :
{0 env1 : Env sx} ->
TypeWf env1 a ->
EnvWf env2 ->
IsExtension thin env2 env1 ->
TypeWf env2 (wkn a thin)
wknPresTypeConv :
{0 env1 : Env sx} ->
TypeConv env1 a b ->
EnvWf env2 ->
IsExtension thin env2 env1 ->
TypeConv env2 (wkn a thin) (wkn b thin)
wknPresTermWf :
{0 env1 : Env sx} ->
TermWf env1 t a ->
EnvWf env2 ->
IsExtension thin env2 env1 ->
TermWf env2 (wkn t thin) (wkn a thin)
wknPresTermConv :
{0 env1 : Env sx} ->
TermConv env1 t u a ->
EnvWf env2 ->
IsExtension thin env2 env1 ->
TermConv env2 (wkn t thin) (wkn u thin) (wkn a thin)
|