diff options
author | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-02-15 17:04:28 +0000 |
---|---|---|
committer | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-02-15 17:04:28 +0000 |
commit | 78aad93db3d7029e0a9a8517a2db92533fd1f401 (patch) | |
tree | 2b75aa99c738f8998671cd2f4690ecbcd8b66417 | |
parent | 146aa079c60c25e1953b94d9799ef520243aefdb (diff) |
Make expressions unable to change state.
-rw-r--r-- | src/Helium/Data/Pseudocode/Core.agda | 61 | ||||
-rw-r--r-- | src/Helium/Instructions/Base.agda | 25 | ||||
-rw-r--r-- | src/Helium/Semantics/Denotational/Core.agda | 137 |
3 files changed, 106 insertions, 117 deletions
diff --git a/src/Helium/Data/Pseudocode/Core.agda b/src/Helium/Data/Pseudocode/Core.agda index a50fb84..8a0c4e3 100644 --- a/src/Helium/Data/Pseudocode/Core.agda +++ b/src/Helium/Data/Pseudocode/Core.agda @@ -13,13 +13,16 @@ open import Data.Fin using (Fin; #_) open import Data.Nat as ℕ using (ℕ; zero; suc) open import Data.Nat.Properties using (+-comm) open import Data.Product using (∃; _,_; proj₂; uncurry) +open import Data.Sum using ([_,_]′; inj₁; inj₂) open import Data.Vec using (Vec; []; _∷_; lookup; map) -open import Data.Vec.Relation.Unary.All using (All; []; _∷_; reduce; all?) +open import Data.Vec.Relation.Unary.All using (All; []; _∷_; reduce) +open import Data.Vec.Relation.Unary.Any using (Any; here; there) open import Function as F using (_∘_; _∘′_; _∋_) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Relation.Nullary using (yes; no) -open import Relation.Nullary.Decidable.Core using (True; map′) +open import Relation.Nullary.Decidable.Core using (True; False; toWitness; fromWitness; map′) open import Relation.Nullary.Product using (_×-dec_) +open import Relation.Nullary.Sum using (_⊎-dec_) open import Relation.Unary using (Decidable) --- The set of types and boolean properties of them @@ -95,10 +98,15 @@ data Literal : Type → Set where module Code {o} (Σ : Vec Type o) where data Expression {n} (Γ : Vec Type n) : Type → Set - data CanAssign {n} {Γ} : ∀ {t} → Expression {n} Γ t → Set + data CanAssign {n Γ} : ∀ {t} → Expression {n} Γ t → Set canAssign? : ∀ {n Γ t} → Decidable (CanAssign {n} {Γ} {t}) canAssignAll? : ∀ {n Γ m ts} → Decidable {A = All (Expression {n} Γ) {m} ts} (All (CanAssign ∘ proj₂) ∘ (reduce (λ {x} e → x , e))) + data AssignsState {n Γ} : ∀ {t e} → CanAssign {n} {Γ} {t} e → Set + assignsState? : ∀ {n Γ t e} → Decidable (AssignsState {n} {Γ} {t} {e}) + assignsStateAny? : ∀ {n Γ m ts es} → Decidable {A = All (CanAssign ∘ proj₂) (reduce {P = Expression {n} Γ} (λ {x} e → x , e) {m} {ts} es)} (Any (AssignsState ∘ proj₂) ∘ reduce (λ {x} a → x , a)) data Statement {n} (Γ : Vec Type n) : Set + data ChangesState {n Γ} : Statement {n} Γ → Set + changesState? : ∀ {n Γ} → Decidable (ChangesState {n} {Γ}) data Function {n} (Γ : Vec Type n) (ret : Type) : Set data Procedure {n} (Γ : Vec Type n) : Set @@ -134,7 +142,6 @@ module Code {o} (Σ : Vec Type o) where _^_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → ℕ → Expression Γ t _>>_ : Expression Γ int → ℕ → Expression Γ int rnd : Expression Γ real → Expression Γ int - -- get : ℕ → Expression Γ int → Expression Γ bit fin : ∀ {k ms n} → (All (Fin) ms → Fin n) → Expression Γ (tuple k (map fin ms)) → Expression Γ (fin n) asInt : ∀ {m} → Expression Γ (fin m) → Expression Γ int tup : ∀ {m ts} → All (Expression Γ) ts → Expression Γ (tuple m ts) @@ -176,7 +183,6 @@ module Code {o} (Σ : Vec Type o) where canAssign? (e ^ e₁) = no λ () canAssign? (e >> e₁) = no λ () canAssign? (rnd e) = no λ () - -- canAssign? (get x e) = no λ () canAssign? (fin x e) = no λ () canAssign? (asInt e) = no λ () canAssign? (tup es) = map′ tup (λ { (tup es) → es }) (canAssignAll? es) @@ -186,6 +192,29 @@ module Code {o} (Σ : Vec Type o) where canAssignAll? [] = yes [] canAssignAll? (e ∷ es) = map′ (uncurry _∷_) (λ { (e ∷ es) → e , es }) (canAssign? e ×-dec canAssignAll? es) + data AssignsState where + state : ∀ i {i<o} → AssignsState (state i {i<o}) + _∶ˡ_ : ∀ {m n t e₁ e₂ a₁} → AssignsState a₁ → ∀ a₂ → AssignsState (_∶_ {m = m} {n} {t} {e₁} {e₂} a₁ a₂) + _∶ʳ_ : ∀ {m n t e₁ e₂} a₁ {a₂} → AssignsState a₂ → AssignsState (_∶_ {m = m} {n} {t} {e₁} {e₂} a₁ a₂) + [_] : ∀ {t e a} → AssignsState a → AssignsState ([_] {t = t} {e} a) + unbox : ∀ {t e a} → AssignsState a → AssignsState (unbox {t = t} {e} a) + slice : ∀ {i j t e₁ a} → AssignsState a → ∀ e₂ → AssignsState (slice {i = i} {j} {t} {e₁} a e₂) + cast : ∀ {i j t e} .(eq : i ≡ j) {a} → AssignsState a → AssignsState (cast {t = t} {e} eq a) + tup : ∀ {m ts es as} → Any (AssignsState ∘ proj₂) (reduce (λ {x} a → x , a) as) → AssignsState (tup {m = m} {ts} {es} as) + + assignsState? (state i) = yes (state i) + assignsState? (var i) = no λ () + assignsState? abort = no λ () + assignsState? (a ∶ a₁) = map′ [ (_∶ˡ a₁) , (a ∶ʳ_) ]′ (λ { (s ∶ˡ _) → inj₁ s ; (_ ∶ʳ s) → inj₂ s }) (assignsState? a ⊎-dec assignsState? a₁) + assignsState? [ a ] = map′ [_] (λ { [ s ] → s }) (assignsState? a) + assignsState? (unbox a) = map′ unbox (λ { (unbox s) → s }) (assignsState? a) + assignsState? (slice a e₂) = map′ (λ s → slice s e₂ ) (λ { (slice s _) → s }) (assignsState? a) + assignsState? (cast eq a) = map′ (cast eq) (λ { (cast _ s) → s }) (assignsState? a) + assignsState? (tup as) = map′ tup (λ { (tup ss) → ss }) (assignsStateAny? as) + + assignsStateAny? {es = []} [] = no λ () + assignsStateAny? {es = e ∷ es} (a ∷ as) = map′ [ here , there ]′ (λ { (here s) → inj₁ s ; (there ss) → inj₂ ss }) (assignsState? a ⊎-dec assignsStateAny? as) + infix 4 _≔_ infixl 2 if_then_else_ infixl 1 _∙_ _∙return_ @@ -194,14 +223,32 @@ module Code {o} (Σ : Vec Type o) where data Statement Γ where _∙_ : Statement Γ → Statement Γ → Statement Γ skip : Statement Γ - _≔_ : ∀ {t} → (ref : Expression Γ t) → {canAssign : True (canAssign? ref)}→ Expression Γ t → Statement Γ + _≔_ : ∀ {t} → (ref : Expression Γ t) → {canAssign : True (canAssign? ref)} → Expression Γ t → Statement Γ declare : ∀ {t} → Expression Γ t → Statement (t ∷ Γ) → Statement Γ invoke : ∀ {m Δ} → Procedure Δ → Expression Γ (tuple m Δ) → Statement Γ if_then_else_ : Expression Γ bool → Statement Γ → Statement Γ → Statement Γ for : ∀ m → Statement (fin m ∷ Γ) → Statement Γ + data ChangesState where + _∙ˡ_ : ∀ {s₁} → ChangesState s₁ → ∀ s₂ → ChangesState (s₁ ∙ s₂) + _∙ʳ_ : ∀ s₁ {s₂} → ChangesState s₂ → ChangesState (s₁ ∙ s₂) + _≔_ : ∀ {t ref} canAssign {assignsState : True (assignsState? (toWitness canAssign))} e₂ → ChangesState (_≔_ {t = t} ref {canAssign} e₂) + declare : ∀ {t} e {s} → ChangesState s → ChangesState (declare {t = t} e s) + invoke : ∀ {m Δ} p e → ChangesState (invoke {m = m} {Δ} p e) + if_then′_else_ : ∀ e {s₁} → ChangesState s₁ → ∀ s₂ → ChangesState (if e then s₁ else s₂) + if_then_else′_ : ∀ e s₁ {s₂} → ChangesState s₂ → ChangesState (if e then s₁ else s₂) + for : ∀ m {s} → ChangesState s → ChangesState (for m s) + + changesState? (s₁ ∙ s₂) = map′ [ _∙ˡ s₂ , s₁ ∙ʳ_ ]′ (λ { (s ∙ˡ _) → inj₁ s ; (_ ∙ʳ s) → inj₂ s }) (changesState? s₁ ⊎-dec changesState? s₂) + changesState? skip = no λ () + changesState? (_≔_ ref {a} e) = map′ (λ s → _≔_ a {fromWitness s} e) (λ { (_≔_ _ {s} _) → toWitness s }) (assignsState? (toWitness a)) + changesState? (declare e s) = map′ (declare e) (λ { (declare e s) → s }) (changesState? s) + changesState? (invoke p e) = yes (invoke p e) + changesState? (if e then s₁ else s₂) = map′ [ if e then′_else s₂ , if e then s₁ else′_ ]′ (λ { (if _ then′ s else _) → inj₁ s ; (if _ then _ else′ s) → inj₂ s }) (changesState? s₁ ⊎-dec changesState? s₂) + changesState? (for m s) = map′ (for m) (λ { (for m s) → s }) (changesState? s) + data Function Γ ret where - _∙return_ : Statement Γ → Expression Γ ret → Function Γ ret + _∙return_ : (s : Statement Γ) → {False (changesState? s)} → Expression Γ ret → Function Γ ret declare : ∀ {t} → Expression Γ t → Function (t ∷ Γ) ret → Function Γ ret data Procedure Γ where diff --git a/src/Helium/Instructions/Base.agda b/src/Helium/Instructions/Base.agda index 8473d65..62a6968 100644 --- a/src/Helium/Instructions/Base.agda +++ b/src/Helium/Instructions/Base.agda @@ -219,8 +219,8 @@ to32 Instr.32bit = join module _ (d : Instr.VecOp₂) where open Instr.VecOp₂ d - -- op₁, op₂, e, elmtMask -> result - vec-op₂′ : Function (bits (toℕ esize) ∷ bits (toℕ esize) ∷ fin (toℕ elements) ∷ elmtMask ∷ []) (bits (toℕ esize)) → Procedure [] + -- 0:op₂ 1:e 2:op₁ 3:result 4:elmtMask 5:curBeat + vec-op₂′ : Statement (bits (toℕ esize) ∷ fin (toℕ elements) ∷ array (bits (toℕ esize)) (toℕ elements) ∷ array (bits (toℕ esize)) (toℕ elements) ∷ elmtMask ∷ beat ∷ []) → Procedure [] vec-op₂′ op = declare (lit (zero ′f)) ( declare (lit (Vec.replicate false ′x)) ( -- 0:elmtMask 1:curBeat @@ -230,9 +230,7 @@ module _ (d : Instr.VecOp₂) where -- 0:op₁ 1:result 2:elmtMask 3:curBeat for (toℕ elements) ( -- 0:e 1:op₁ 2:result 3:elmtMask 4:curBeat - declare op₂ ( - -- 0:op₂ 1:e 2:op₁ 3:result 4:elmtMask 5:curBeat - index (var 3) (var 1) ≔ call op (tup (index (var 2) (var 1) ∷ var 0 ∷ var 1 ∷ var 4 ∷ [])))) ∙ + declare op₂ op ) ∙ -- 0:op₁ 1:result 2:elmtMask 3:curBeat invoke copyMasked (tup (lit (dest ′f) ∷ to32 size (var 1) ∷ var 3 ∷ var 2 ∷ [])))) ∙end)) @@ -244,7 +242,7 @@ module _ (d : Instr.VecOp₂) where ]′ src₂ vec-op₂ : Function (bits (toℕ esize) ∷ bits (toℕ esize) ∷ []) (bits (toℕ esize)) → Procedure [] - vec-op₂ op = vec-op₂′ (skip ∙return call op (tup (var 0 ∷ var 1 ∷ []))) + vec-op₂ op = vec-op₂′ (index (var 3) (var 1) ≔ call op (tup (index (var 2) (var 1) ∷ var 0 ∷ []))) vadd : Instr.VAdd → Procedure [] vadd d = vec-op₂ d (skip ∙return sliceⁱ 0 (uint (var 0) + uint (var 1))) @@ -280,18 +278,15 @@ vmla d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0) * private vqr?dmulh : Instr.VQDMulH → Function (int ∷ int ∷ []) int → Procedure [] vqr?dmulh d f = vec-op₂′ d ( - -- 0:op₁ 1:op₂ 2:e 3:elmtMask - declare (call f (tup (sint (var 0) ∷ sint (var 1) ∷ []))) ( - declare (lit (Vec.replicate false ′x)) ( + -- 0:op₂ 1:e 2:op₁ 3:result 4:elmtMask 5:curBeat + declare (call f (tup (sint (index (var 2) (var 1)) ∷ sint (var 0) ∷ []))) ( declare (lit (false ′b)) ( - -- 0:sat 1:result 2:value 3:op₁ 4:op₂ 5:e 6:elmtMask - tup (var 1 ∷ var 0 ∷ []) ≔ call (SignedSatQ (toℕ esize-1)) (tup (var 2 ∷ [])) ∙ - if var 0 && hasBit (var 6) (fin e*esize>>3 (tup (var 5 ∷ []))) + -- 0:sat 1:value 2:op₂ 3:e 4:op₁ 5:result 6:elmtMask 7:curBeat + tup (index (var 5) (var 3) ∷ var 0 ∷ []) ≔ call (SignedSatQ (toℕ esize-1)) (tup (var 1 ∷ [])) ∙ + if var 0 && hasBit (var 6) (fin e*esize>>3 (tup ((var 3) ∷ []))) then FPSCR-QC ≔ lit ((true ∷ []) ′x) - else skip - ∙return var 1 - )))) + else skip))) where open Instr.VecOp₂ d diff --git a/src/Helium/Semantics/Denotational/Core.agda b/src/Helium/Semantics/Denotational/Core.agda index a644adb..b425252 100644 --- a/src/Helium/Semantics/Denotational/Core.agda +++ b/src/Helium/Semantics/Denotational/Core.agda @@ -182,121 +182,71 @@ module Expression open Code Σ - ⟦_⟧ᵉ : ∀ {n} {Γ : Vec Type n} {t} → Expression Γ t → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ t ⟧ₜ + ⟦_⟧ᵉ : ∀ {n} {Γ : Vec Type n} {t} → Expression Γ t → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ t ⟧ₜ ⟦_⟧ˢ : ∀ {n} {Γ : Vec Type n} → Statement Γ → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ - ⟦_⟧ᶠ : ∀ {n} {Γ : Vec Type n} {ret} → Function Γ ret → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ ret ⟧ₜ + ⟦_⟧ᶠ : ∀ {n} {Γ : Vec Type n} {ret} → Function Γ ret → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ ret ⟧ₜ ⟦_⟧ᵖ : ∀ {n} {Γ : Vec Type n} → Procedure Γ → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ update : ∀ {n Γ t e} → CanAssign {n} {Γ} {t} e → ⟦ t ⟧ₜ → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ - ⟦ lit x ⟧ᵉ σ γ = σ , 𝒦 x - ⟦ state i ⟧ᵉ σ γ = σ , fetch Σ σ (# i) - ⟦_⟧ᵉ {Γ = Γ} (var i) σ γ = σ , fetch Γ γ (# i) - ⟦ abort e ⟧ᵉ σ γ = case P.proj₂ (⟦ e ⟧ᵉ σ γ) of λ () - ⟦ _≟_ {hasEquality = hasEq} e e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , y = ⟦ e ⟧ᵉ σ′ γ - σ′′ , equal (toWitness hasEq) x y - ⟦ _<?_ {isNumeric = isNum} e e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , y = ⟦ e ⟧ᵉ σ′ γ - σ′′ , comp (toWitness isNum) x y - ⟦ inv e ⟧ᵉ σ γ = P.map₂ Bool.not (⟦ e ⟧ᵉ σ γ) - ⟦ e && e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - Bool.if x then ⟦ e₁ ⟧ᵉ σ′ γ else σ′ , false - ⟦ e || e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - Bool.if x then σ′ , true else ⟦ e₁ ⟧ᵉ σ′ γ - ⟦ not e ⟧ᵉ σ γ = P.map₂ Bits.¬_ (⟦ e ⟧ᵉ σ γ) - ⟦ e and e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ - σ′′ , x Bits.∧ y - ⟦ e or e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ - σ′′ , x Bits.∨ y - ⟦ [ e ] ⟧ᵉ σ γ = P.map₂ (Vec._∷ []) (⟦ e ⟧ᵉ σ γ) - ⟦ unbox e ⟧ᵉ σ γ = P.map₂ Vec.head (⟦ e ⟧ᵉ σ γ) - ⟦ _∶_ {t = t} e e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ - σ′′ , join t x y - ⟦ slice {t = t} e e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ - σ′′ , sliced t x y - ⟦ cast {t = t} eq e ⟧ᵉ σ γ = P.map₂ (casted t eq) (⟦ e ⟧ᵉ σ γ) - ⟦ -_ {isNumeric = isNum} e ⟧ᵉ σ γ = P.map₂ (neg (toWitness isNum)) (⟦ e ⟧ᵉ σ γ) - ⟦ _+_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ - σ′′ , add isNum₁ isNum₂ x y - ⟦ _*_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ - σ′′ , mul isNum₁ isNum₂ x y + ⟦ lit x ⟧ᵉ σ γ = 𝒦 x + ⟦ state i ⟧ᵉ σ γ = fetch Σ σ (# i) + ⟦_⟧ᵉ {Γ = Γ} (var i) σ γ = fetch Γ γ (# i) + ⟦ abort e ⟧ᵉ σ γ = case ⟦ e ⟧ᵉ σ γ of λ () + ⟦ _≟_ {hasEquality = hasEq} e e₁ ⟧ᵉ σ γ = equal (toWitness hasEq) (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) + ⟦ _<?_ {isNumeric = isNum} e e₁ ⟧ᵉ σ γ = comp (toWitness isNum) (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) + ⟦ inv e ⟧ᵉ σ γ = Bool.not (⟦ e ⟧ᵉ σ γ) + ⟦ e && e₁ ⟧ᵉ σ γ = Bool.if ⟦ e ⟧ᵉ σ γ then ⟦ e₁ ⟧ᵉ σ γ else false + ⟦ e || e₁ ⟧ᵉ σ γ = Bool.if ⟦ e ⟧ᵉ σ γ then true else ⟦ e₁ ⟧ᵉ σ γ + ⟦ not e ⟧ᵉ σ γ = Bits.¬_ (⟦ e ⟧ᵉ σ γ) + ⟦ e and e₁ ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ Bits.∧ ⟦ e₁ ⟧ᵉ σ γ + ⟦ e or e₁ ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ Bits.∨ ⟦ e₁ ⟧ᵉ σ γ + ⟦ [ e ] ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ Vec.∷ [] + ⟦ unbox e ⟧ᵉ σ γ = Vec.head (⟦ e ⟧ᵉ σ γ) + ⟦ _∶_ {t = t} e e₁ ⟧ᵉ σ γ = join t (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) + ⟦ slice {t = t} e e₁ ⟧ᵉ σ γ = sliced t (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) + ⟦ cast {t = t} eq e ⟧ᵉ σ γ = casted t eq (⟦ e ⟧ᵉ σ γ) + ⟦ -_ {isNumeric = isNum} e ⟧ᵉ σ γ = neg (toWitness isNum) (⟦ e ⟧ᵉ σ γ) + ⟦ _+_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁ ⟧ᵉ σ γ = add isNum₁ isNum₂ (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) + ⟦ _*_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁ ⟧ᵉ σ γ = mul isNum₁ isNum₂ (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) -- ⟦ e / e₁ ⟧ᵉ σ γ = {!!} - ⟦ _^_ {isNumeric = isNum} e n ⟧ᵉ σ γ = P.map₂ (λ x → pow (toWitness isNum) x n) (⟦ e ⟧ᵉ σ γ) - ⟦ _>>_ e n ⟧ᵉ σ γ = P.map₂ (λ x → shiftr 2≉0 x n) (⟦ e ⟧ᵉ σ γ) - ⟦ rnd e ⟧ᵉ σ γ = P.map₂ ⌊_⌋ (⟦ e ⟧ᵉ σ γ) - ⟦ fin x e ⟧ᵉ σ γ = P.map₂ (apply x) (⟦ e ⟧ᵉ σ γ) + ⟦ _^_ {isNumeric = isNum} e n ⟧ᵉ σ γ = pow (toWitness isNum) (⟦ e ⟧ᵉ σ γ) n + ⟦ _>>_ e n ⟧ᵉ σ γ = shiftr 2≉0 (⟦ e ⟧ᵉ σ γ) n + ⟦ rnd e ⟧ᵉ σ γ = ⌊ ⟦ e ⟧ᵉ σ γ ⌋ + ⟦ fin x e ⟧ᵉ σ γ = apply x (⟦ e ⟧ᵉ σ γ) where apply : ∀ {k ms n} → (All Fin ms → Fin n) → ⟦ Vec.map {n = k} fin ms ⟧ₜ′ → ⟦ fin n ⟧ₜ apply {zero} {[]} f xs = f [] apply {suc k} {_ ∷ ms} f xs = apply (λ x → f (tupHead (Vec.map fin ms) xs ∷ x)) (tupTail (Vec.map fin ms) xs) - ⟦ asInt e ⟧ᵉ σ γ = P.map₂ (λ i → Fin.toℕ i ℤ′.×′ 1ℤ) (⟦ e ⟧ᵉ σ γ) - ⟦ tup [] ⟧ᵉ σ γ = σ , _ + ⟦ asInt e ⟧ᵉ σ γ = Fin.toℕ (⟦ e ⟧ᵉ σ γ) ℤ′.×′ 1ℤ + ⟦ tup [] ⟧ᵉ σ γ = _ ⟦ tup (e ∷ []) ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ - ⟦ tup (e ∷ e′ ∷ es) ⟧ᵉ σ γ = do - let σ′ , v = ⟦ e ⟧ᵉ σ γ - let σ′′ , vs = ⟦ tup (e′ ∷ es) ⟧ᵉ σ′ γ - σ′′ , (v , vs) - ⟦ call f e ⟧ᵉ σ γ = P.uncurry ⟦ f ⟧ᶠ (⟦ e ⟧ᵉ σ γ) - ⟦ if e then e₁ else e₂ ⟧ᵉ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - Bool.if x then ⟦ e₁ ⟧ᵉ σ′ γ else ⟦ e₂ ⟧ᵉ σ′ γ - - ⟦ s ∙ s₁ ⟧ˢ σ γ = do - let σ′ , γ′ = ⟦ s ⟧ˢ σ γ - ⟦ s ⟧ˢ σ′ γ′ + ⟦ tup (e ∷ e′ ∷ es) ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ , ⟦ tup (e′ ∷ es) ⟧ᵉ σ γ + ⟦ call f e ⟧ᵉ σ γ = ⟦ f ⟧ᶠ σ (⟦ e ⟧ᵉ σ γ) + ⟦ if e then e₁ else e₂ ⟧ᵉ σ γ = Bool.if ⟦ e ⟧ᵉ σ γ then ⟦ e₁ ⟧ᵉ σ γ else ⟦ e₂ ⟧ᵉ σ γ + + ⟦ s ∙ s₁ ⟧ˢ σ γ = P.uncurry ⟦ s ⟧ˢ (⟦ s ⟧ˢ σ γ) ⟦ skip ⟧ˢ σ γ = σ , γ - ⟦ _≔_ ref {canAssign = canAssign} e ⟧ˢ σ γ = do - let σ′ , v = ⟦ e ⟧ᵉ σ γ - update (toWitness canAssign) v σ′ γ - ⟦_⟧ˢ {Γ = Γ} (declare e s) σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - let σ′′ , γ′ = ⟦ s ⟧ˢ σ′ (tupCons Γ x γ) - σ′′ , tupTail Γ γ′ - ⟦ invoke p e ⟧ˢ σ γ = do - let σ′ , v = ⟦ e ⟧ᵉ σ γ - ⟦ p ⟧ᵖ σ′ v , γ - ⟦ if e then s₁ else s₂ ⟧ˢ σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - Bool.if x then ⟦ s₁ ⟧ˢ σ′ γ else ⟦ s₂ ⟧ˢ σ′ γ + ⟦ _≔_ ref {canAssign = canAssign} e ⟧ˢ σ γ = update (toWitness canAssign) (⟦ e ⟧ᵉ σ γ) σ γ + ⟦_⟧ˢ {Γ = Γ} (declare e s) σ γ = P.map₂ (tupTail Γ) (⟦ s ⟧ˢ σ (tupCons Γ (⟦ e ⟧ᵉ σ γ) γ)) + ⟦ invoke p e ⟧ˢ σ γ = ⟦ p ⟧ᵖ σ (⟦ e ⟧ᵉ σ γ) , γ + ⟦ if e then s₁ else s₂ ⟧ˢ σ γ = Bool.if ⟦ e ⟧ᵉ σ γ then ⟦ s₁ ⟧ˢ σ γ else ⟦ s₂ ⟧ˢ σ γ ⟦_⟧ˢ {Γ = Γ} (for m s) σ γ = helper m ⟦ s ⟧ˢ σ γ where helper : ∀ m → (⟦ Σ ⟧ₜ′ → ⟦ fin m ∷ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ fin m ∷ Γ ⟧ₜ′) → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ helper zero s σ γ = σ , γ - helper (suc m) s σ γ with s σ (tupCons Γ zero γ) - ... | σ′ , γ′ = helper m s′ σ′ (tupTail Γ γ′) + helper (suc m) s σ γ = P.uncurry (helper m s′) (P.map₂ (tupTail Γ) (s σ (tupCons Γ zero γ))) where s′ : ⟦ Σ ⟧ₜ′ → ⟦ fin m ∷ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ fin m ∷ Γ ⟧ₜ′ s′ σ γ = P.map₂ (tupCons Γ (tupHead Γ γ) ∘′ (tupTail Γ)) (s σ (tupCons Γ (suc (tupHead Γ γ)) (tupTail Γ γ))) - ⟦ s ∙return e ⟧ᶠ σ γ with ⟦ s ⟧ˢ σ γ - ... | σ′ , γ′ = ⟦ e ⟧ᵉ σ′ γ′ - ⟦_⟧ᶠ {Γ = Γ} (declare e f) σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - ⟦ f ⟧ᶠ σ′ (tupCons Γ x γ) + ⟦ s ∙return e ⟧ᶠ σ γ = P.uncurry ⟦ e ⟧ᵉ (⟦ s ⟧ˢ σ γ) + ⟦_⟧ᶠ {Γ = Γ} (declare e f) σ γ = ⟦ f ⟧ᶠ σ (tupCons Γ (⟦ e ⟧ᵉ σ γ) γ) ⟦ s ∙end ⟧ᵖ σ γ = P.proj₁ (⟦ s ⟧ˢ σ γ) - ⟦_⟧ᵖ {Γ = Γ} (declare e p) σ γ = do - let σ′ , x = ⟦ e ⟧ᵉ σ γ - ⟦ p ⟧ᵖ σ′ (tupCons Γ x γ) + ⟦_⟧ᵖ {Γ = Γ} (declare e p) σ γ = ⟦ p ⟧ᵖ σ (tupCons Γ (⟦ e ⟧ᵉ σ γ) γ) update (state i {i<o}) v σ γ = updateAt Σ (#_ i {m<n = i<o}) v σ , γ update {Γ = Γ} (var i {i<n}) v σ γ = σ , updateAt Γ (#_ i {m<n = i<n}) v γ @@ -306,10 +256,7 @@ module Expression update e₁ (sliced t (casted t (ℕₚ.+-comm _ m) v) zero) σ′ γ′ update [ e ] v σ γ = update e (Vec.head v) σ γ update (unbox e) v σ γ = update e (v ∷ []) σ γ - update (slice {t = t} {e₁ = e₁} a e₂) v σ γ = do - let σ′ , off = ⟦ e₂ ⟧ᵉ σ γ - let σ′′ , orig = ⟦ e₁ ⟧ᵉ σ′ γ - updateSliced t orig off v (λ v → update a v σ′′ γ) + update (slice {t = t} {e₁ = e₁} a e₂) v σ γ = updateSliced t (⟦ e₁ ⟧ᵉ σ γ) (⟦ e₂ ⟧ᵉ σ γ) v (λ v → update a v σ γ) update (cast {t = t} eq e) v σ γ = update e (casted t (≡.sym eq) v) σ γ update (tup {es = []} x) v σ γ = σ , γ update (tup {es = _ ∷ []} (x ∷ [])) v σ γ = update x v σ γ |