diff options
author | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-04-05 12:06:33 +0100 |
---|---|---|
committer | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-04-05 12:06:33 +0100 |
commit | b212c150ec0a9bf45cf6c28fba997693669e78d2 (patch) | |
tree | 65351de7452c7e9fd111354d185e10c94eb4c569 | |
parent | 6acd0e87fa8ab2a3230626b37f1cd02181810a1a (diff) |
Minor clean up.
-rw-r--r-- | src/Helium/Algebra/Ordered/StrictTotal/Properties/Group.agda | 10 | ||||
-rw-r--r-- | src/Helium/Data/Pseudocode/Algebra/Properties.agda | 5 |
2 files changed, 5 insertions, 10 deletions
diff --git a/src/Helium/Algebra/Ordered/StrictTotal/Properties/Group.agda b/src/Helium/Algebra/Ordered/StrictTotal/Properties/Group.agda index e186c71..5cf2d5b 100644 --- a/src/Helium/Algebra/Ordered/StrictTotal/Properties/Group.agda +++ b/src/Helium/Algebra/Ordered/StrictTotal/Properties/Group.agda @@ -202,14 +202,14 @@ x⁻¹≈ε⇒x≈ε {x} x⁻¹≈ε = ≮∧≯⇒≈ (<-irrefl (Eq.sym x⁻¹ x<y⇒ε<y∙x⁻¹ : ∀ {x y} → x < y → ε < y ∙ x ⁻¹ x<y⇒ε<y∙x⁻¹ {x} {y} x<y = begin-strict ε ≈˘⟨ inverseʳ x ⟩ - x ∙ x ⁻¹ <⟨ ∙-invariantʳ (x ⁻¹) x<y ⟩ + x ∙ x ⁻¹ <⟨ ∙-monoʳ-< x<y ⟩ y ∙ x ⁻¹ ∎ ε<y∙x⁻¹⇒x<y : ∀ {x y} → ε < y ∙ x ⁻¹ → x < y ε<y∙x⁻¹⇒x<y {x} {y} ε<yx⁻¹ = begin-strict x ≈˘⟨ identityˡ x ⟩ - ε ∙ x <⟨ ∙-invariantʳ x ε<yx⁻¹ ⟩ - y ∙ x ⁻¹ ∙ x ≈⟨ assoc y (x ⁻¹) x ⟩ - y ∙ (x ⁻¹ ∙ x) ≈⟨ ∙-congˡ (inverseˡ x) ⟩ - y ∙ ε ≈⟨ identityʳ y ⟩ + ε ∙ x <⟨ ∙-monoʳ-< ε<yx⁻¹ ⟩ + y ∙ x ⁻¹ ∙ x ≈⟨ assoc y (x ⁻¹) x ⟩ + y ∙ (x ⁻¹ ∙ x) ≈⟨ ∙-congˡ (inverseˡ x) ⟩ + y ∙ ε ≈⟨ identityʳ y ⟩ y ∎ diff --git a/src/Helium/Data/Pseudocode/Algebra/Properties.agda b/src/Helium/Data/Pseudocode/Algebra/Properties.agda index 1c52cda..39bd1e7 100644 --- a/src/Helium/Data/Pseudocode/Algebra/Properties.agda +++ b/src/Helium/Data/Pseudocode/Algebra/Properties.agda @@ -238,11 +238,6 @@ module ⌊⌋ where ⌊ x ⌋ ℤ.+ ⌊ y ⌋ ℤ.+ 1ℤ ∎ where open ℤ.Reasoning - -- ⌊⌊x⌋+m/n⌋≈⌊x+m/n⌋ : ∀ x m {n} → (n>0 : n ℤ.> 0) → - -- let n≉0 = ℤ.<⇒≉ n>0 ∘ ℤ.Eq.sym in - -- ⌊ ⌊ x ⌋ /1 ℝ.* m /1 ℝ.* n≉0 ℤ.⁻¹ ⌋ ℤ.≈ ⌊ x ℝ.* m /1 ℝ.* n≉0 ℤ.⁻¹ ⌋ - -- ⌊⌊x⌋+m/n⌋≈⌊x+m/n⌋ x m {n} n>0 = ℤ.≤∧≮⇒≈ {!!} {!!} - f-monocont+int-preimage⇒⌊f⌊x⌋⌋≈⌊fx⌋ : ∀ (f : ℝ → ℝ) → ℝ.IsMonotoneContinuous f → ℝ.IntegerPreimage f → ∀ x → ⌊ f (⌊ x ⌋ /1) ⌋ ℤ.≈ ⌊ f x ⌋ |