summaryrefslogtreecommitdiff
path: root/src/Helium/Algebra/Ordered/StrictTotal/Properties/Ring.agda
diff options
context:
space:
mode:
authorGreg Brown <greg.brown@cl.cam.ac.uk>2022-04-02 11:41:51 +0100
committerGreg Brown <greg.brown@cl.cam.ac.uk>2022-04-02 11:59:21 +0100
commit2167866c53aa7f9cbb52e776bfb64f53acf3fa2c (patch)
treed9422bd08ee318b3fad90d03210f6a02a4c30783 /src/Helium/Algebra/Ordered/StrictTotal/Properties/Ring.agda
parent23e8afe152a84551491594aea133488523525410 (diff)
Add more properties for ordered structures.
Diffstat (limited to 'src/Helium/Algebra/Ordered/StrictTotal/Properties/Ring.agda')
-rw-r--r--src/Helium/Algebra/Ordered/StrictTotal/Properties/Ring.agda584
1 files changed, 529 insertions, 55 deletions
diff --git a/src/Helium/Algebra/Ordered/StrictTotal/Properties/Ring.agda b/src/Helium/Algebra/Ordered/StrictTotal/Properties/Ring.agda
index 484143c..5e51e89 100644
--- a/src/Helium/Algebra/Ordered/StrictTotal/Properties/Ring.agda
+++ b/src/Helium/Algebra/Ordered/StrictTotal/Properties/Ring.agda
@@ -14,68 +14,542 @@ module Helium.Algebra.Ordered.StrictTotal.Properties.Ring
where
open Ring ring
+ renaming
+ ( trans to <-trans
+ ; irrefl to <-irrefl
+ ; asym to <-asym
+ ; 0<a+0<b⇒0<ab to x>0∧y>0⇒x*y>0
+ )
-open import Agda.Builtin.FromNat
-open import Agda.Builtin.FromNeg
-open import Data.Nat using (suc; NonZero)
+open import Algebra.Definitions
+open import Data.Nat as ℕ using (suc; NonZero)
open import Data.Sum using (inj₁; inj₂)
-open import Data.Unit.Polymorphic using (⊤)
-open import Relation.Binary using (tri<; tri≈; tri>)
+open import Function using (_∘_)
+open import Function.Definitions
+open import Helium.Algebra.Ordered.StrictTotal.Consequences strictTotalOrder
+open import Relation.Binary.Core
+open import Relation.Binary.Definitions using (tri<; tri≈; tri>)
open import Relation.Binary.Reasoning.StrictPartialOrder strictPartialOrder
open import Algebra.Properties.Ring Unordered.ring public
renaming (-0#≈0# to -0≈0)
+
open import Algebra.Properties.Semiring.Mult.TCOptimised Unordered.semiring public
open import Algebra.Properties.Semiring.Exp.TCOptimised Unordered.semiring public
+open import Helium.Relation.Binary.Properties.StrictTotalOrder strictTotalOrder public
open import Helium.Algebra.Ordered.StrictTotal.Properties.AbelianGroup +-abelianGroup public
- using (<⇒≱; ≤⇒≯; >⇒≉; ≈⇒≯; <⇒≉; ≈⇒≮; ≤∧≉⇒<; ≥∧≉⇒>)
+ using
+ ( ×-zeroˡ; ×-zeroʳ
+ ; ×-identityˡ
+ ; n≢0⇒×-monoˡ-<; ×-monoˡ-≤
+ ; ×-cancelˡ-<; n≢0⇒×-cancelˡ-≤
+ )
renaming
- ( x<y⇒ε<yx⁻¹ to x<y⇒0<y-x
- ; ⁻¹-anti-mono to -‿anti-mono
- )
-
-instance
- ⊤′ : ∀ {ℓ} → ⊤ {ℓ = ℓ}
- ⊤′ = _
-
- number : Number Carrier
- number = record
- { Constraint = λ _ → ⊤
- ; fromNat = _× 1#
- }
-
- negative : Negative Carrier
- negative = record
- { Constraint = λ _ → ⊤
- ; fromNeg = λ x → - (x × 1#)
- }
-
-0≤1 : 0 ≤ 1
-0≤1 with compare 0 1
-... | tri< 0<1 _ _ = inj₁ 0<1
-... | tri≈ _ 0≈1 _ = inj₂ 0≈1
-... | tri> _ _ 0>1 = inj₁ (begin-strict
- 0 <⟨ 0<a+0<b⇒0<ab 0<-1 0<-1 ⟩
- -1 * -1 ≈˘⟨ -‿distribˡ-* 1 -1 ⟩
- - (1 * -1) ≈⟨ -‿cong (*-identityˡ -1) ⟩
- - -1 ≈⟨ -‿involutive 1 ⟩
- 1 ∎)
- where
- 0<-1 = begin-strict
- 0 ≈˘⟨ -0≈0 ⟩
- - 0 <⟨ -‿anti-mono 0>1 ⟩
- -1 ∎
-
-1≉0+n≉0⇒0<+n : 1 ≉ 0 → ∀ n → {{NonZero n}} → 0 < fromNat n
-1≉0+n≉0⇒0<+n 1≉0 (suc 0) = ≥∧≉⇒> 0≤1 1≉0
-1≉0+n≉0⇒0<+n 1≉0 (suc (suc n)) = begin-strict
- 0 ≈˘⟨ +-identity² ⟩
- 0 + 0 <⟨ +-invariantˡ 0 (≥∧≉⇒> 0≤1 1≉0) ⟩
- 0 + 1 <⟨ +-invariantʳ 1 (1≉0+n≉0⇒0<+n 1≉0 (suc n)) ⟩
- fromNat (suc n) + 1 ∎
-
-1≉0+n≉0⇒-n<0 : 1 ≉ 0 → ∀ n → {{NonZero n}} → fromNeg n < 0
-1≉0+n≉0⇒-n<0 1≉0 n = begin-strict
- - fromNat n <⟨ -‿anti-mono (1≉0+n≉0⇒0<+n 1≉0 n) ⟩
- - 0 ≈⟨ -0≈0 ⟩
- 0 ∎
+ ( ∙-mono-< to +-mono-<
+ ; ∙-monoˡ-< to +-monoˡ-<
+ ; ∙-monoʳ-< to +-monoʳ-<
+ ; ∙-mono-≤ to +-mono-≤
+ ; ∙-monoˡ-≤ to +-monoˡ-≤
+ ; ∙-monoʳ-≤ to +-monoʳ-≤
+
+ ; ∙-cancelˡ-< to +-cancelˡ-<
+ ; ∙-cancelʳ-< to +-cancelʳ-<
+ ; ∙-cancel-< to +-cancel-<
+ ; ∙-cancelˡ-≤ to +-cancelˡ-≤
+ ; ∙-cancelʳ-≤ to +-cancelʳ-≤
+ ; ∙-cancel-≤ to +-cancel-≤
+ -- _∙_ pres signs
+ ; x≥ε∧y>ε⇒x∙y>ε to x≥0∧y>0⇒x+y>0
+ ; x>ε∧y≥ε⇒x∙y>ε to x>0∧y≥0⇒x+y>0
+ ; x≤ε∧y<ε⇒x∙y<ε to x≤0∧y<0⇒x+y<0
+ ; x<ε∧y≤ε⇒x∙y<ε to x<0∧y≤0⇒x+y<0
+ ; x≥ε∧y≥ε⇒x∙y≥ε to x≥0∧y≥0⇒x+y≥0
+ ; x≤ε∧y≤ε⇒x∙y≤ε to x≤0∧y≤0⇒x+y≤0
+ -- _∙_ resp signs
+ ; x≤ε∧x∙y>ε⇒y>ε to x≤0∧x+y>0⇒y>0
+ ; x≤ε∧y∙x>ε⇒y>ε to x≤0∧y+x>0⇒y>0
+ ; x<ε∧x∙y≥ε⇒y>ε to x<0∧x+y≥0⇒y>0
+ ; x<ε∧y∙x≥ε⇒y>ε to x<0∧y+x≥0⇒y>0
+ ; x≥ε∧x∙y<ε⇒y<ε to x≥0∧x+y<0⇒y<0
+ ; x≥ε∧y∙x<ε⇒y<ε to x≥0∧y+x<0⇒y<0
+ ; x>ε∧x∙y≤ε⇒y<ε to x>0∧x+y≤0⇒y<0
+ ; x>ε∧y∙x≤ε⇒y<ε to x>0∧y+x≤0⇒y<0
+ ; x≤ε∧x∙y≥ε⇒y≥ε to x≤0∧x+y≥0⇒y≥0
+ ; x≤ε∧y∙x≥ε⇒y≥ε to x≤0∧y+x≥0⇒y≥0
+ ; x≥ε∧x∙y≤ε⇒y≤ε to x≥0∧x+y≤0⇒y≤0
+ ; x≥ε∧y∙x≤ε⇒y≤ε to x≥0∧y+x≤0⇒y≤0
+
+ ; x>ε⇒×-monoʳ-< to x>0⇒×-monoʳ-<
+ ; x<ε⇒×-anti-monoʳ-< to x<0⇒×-anti-monoʳ-<
+ ; x≥ε⇒×-monoʳ-≤ to x≥0⇒×-monoʳ-≤
+ ; x≤ε⇒×-anti-monoʳ-≤ to x≤0⇒×-anti-monoʳ-≤
+
+ ; x≥ε⇒×-cancelʳ-< to x≥0⇒×-cancelʳ-<
+ ; x≤ε⇒×-anti-cancelʳ-< to x≤0⇒×-anti-cancelʳ-<
+ ; x>ε⇒×-cancelʳ-≤ to x>0⇒×-cancelʳ-≤
+ ; x<ε⇒×-anti-cancelʳ-≤ to x<0⇒×-anti-cancelʳ-≤
+ -- _×_ pres signs
+ ; n≢0∧x>ε⇒n×x>ε to n≢0∧x>0⇒n×x>0
+ ; n≢0∧x<ε⇒n×x<ε to n≢0∧x<0⇒n×x<0
+ ; x≥ε⇒n×x≥ε to x≥0⇒n×x≥0
+ ; x≤ε⇒n×x≤ε to x≤0⇒n×x≤0
+ -- _×_ resp signs
+ ; n×x>ε⇒x>ε to n×x>0⇒x>0
+ ; n×x<ε⇒x<ε to n×x<0⇒x<0
+ ; n≢0∧n×x≥ε⇒x≥ε to n≢0∧n×x≥0⇒x≥0
+ ; n≢0∧n×x≤ε⇒x≤ε to n≢0∧n×x≤0⇒x≤0
+
+ ; ⁻¹-anti-mono-< to -‿anti-mono-<
+ ; ⁻¹-anti-mono-≤ to -‿anti-mono-≤
+
+ ; ⁻¹-cancel to -‿cancel
+ ; ⁻¹-anti-cancel-< to -‿anti-cancel-<
+ ; ⁻¹-anti-cancel-≤ to -‿anti-cancel-≤
+
+ ; x<ε⇒x⁻¹>ε to x<0⇒-x>0
+ ; x>ε⇒x⁻¹<ε to x>0⇒-x<0
+ ; x≤ε⇒x⁻¹≥ε to x≤0⇒-x≥0
+ ; x≥ε⇒x⁻¹≤ε to x≥0⇒-x≤0
+
+ ; x⁻¹<ε⇒x>ε to -x<0⇒x>0
+ ; x⁻¹>ε⇒x<ε to -x>0⇒x<0
+ ; x⁻¹≤ε⇒x≥ε to -x≤0⇒x≥0
+ ; x⁻¹≥ε⇒x≤ε to -x≥0⇒x≤0
+
+ ; x<y⇒ε<y∙x⁻¹ to x<y⇒0<y-x
+ ; ε<y∙x⁻¹⇒x<y to 0<y-x⇒x<y
+ )
+
+--------------------------------------------------------------------------------
+---- Properties of _*_ and -_
+
+-x*-y≈x*y : ∀ x y → - x * - y ≈ x * y
+-x*-y≈x*y x y = begin-equality
+ - x * - y ≈˘⟨ -‿distribˡ-* x (- y) ⟩
+ - (x * - y) ≈˘⟨ -‿cong (-‿distribʳ-* x y) ⟩
+ - - (x * y) ≈⟨ -‿involutive (x * y) ⟩
+ x * y ∎
+
+--------------------------------------------------------------------------------
+---- Properties of _*_
+
+---- Congruences
+
+-- _<_
+
+x>0⇒*-monoˡ-< : ∀ {x} → x > 0# → Congruent₁ _<_ (x *_)
+x>0⇒*-monoˡ-< {x} x>0 {y} {z} y<z = begin-strict
+ x * y ≈˘⟨ +-identityˡ (x * y) ⟩
+ 0# + x * y ≈˘⟨ +-cong (-‿inverseʳ (x * z)) (-x*-y≈x*y x y) ⟩
+ x * z - x * z + - x * - y ≈⟨ +-congʳ (+-congˡ (-‿distribˡ-* x z)) ⟩
+ x * z + - x * z + - x * - y ≈⟨ +-assoc (x * z) (- x * z) (- x * - y) ⟩
+ x * z + (- x * z + - x * - y) ≈˘⟨ +-congˡ (distribˡ (- x) z (- y)) ⟩
+ x * z + - x * (z - y) ≈˘⟨ +-congˡ (-‿distribˡ-* x (z - y)) ⟩
+ x * z - x * (z - y) <⟨ +-monoˡ-< (x>0⇒-x<0 (x>0∧y>0⇒x*y>0 x>0 (x<y⇒0<y-x y<z))) ⟩
+ x * z + 0# ≈⟨ +-identityʳ (x * z) ⟩
+ x * z ∎
+
+x>0⇒*-monoʳ-< : ∀ {x} → x > 0# → Congruent₁ _<_ (_* x)
+x>0⇒*-monoʳ-< {x} x>0 {y} {z} y<z = begin-strict
+ y * x ≈˘⟨ +-identityˡ (y * x) ⟩
+ 0# + y * x ≈˘⟨ +-cong (-‿inverseʳ (z * x)) (-x*-y≈x*y y x) ⟩
+ z * x - z * x + - y * - x ≈⟨ +-congʳ (+-congˡ (-‿distribʳ-* z x)) ⟩
+ z * x + z * - x + - y * - x ≈⟨ +-assoc (z * x) (z * - x) (- y * - x) ⟩
+ z * x + (z * - x + - y * - x) ≈˘⟨ +-congˡ (distribʳ (- x) z (- y)) ⟩
+ z * x + (z - y) * - x ≈˘⟨ +-congˡ (-‿distribʳ-* (z - y) x) ⟩
+ z * x - (z - y) * x <⟨ +-monoˡ-< (x>0⇒-x<0 (x>0∧y>0⇒x*y>0 (x<y⇒0<y-x y<z) x>0)) ⟩
+ z * x + 0# ≈⟨ +-identityʳ (z * x) ⟩
+ z * x ∎
+
+x<0⇒*-anti-monoˡ-< : ∀ {x} → x < 0# → (x *_) Preserves _<_ ⟶ _>_
+x<0⇒*-anti-monoˡ-< {x} x<0 {y} {z} y<z = begin-strict
+ x * z ≈˘⟨ +-identityʳ (x * z) ⟩
+ x * z + 0# <⟨ +-monoˡ-< (x>0∧y>0⇒x*y>0 (x<0⇒-x>0 x<0) (x<y⇒0<y-x y<z)) ⟩
+ x * z + - x * (z - y) ≈⟨ +-congˡ (distribˡ (- x) z (- y)) ⟩
+ x * z + (- x * z + - x * - y) ≈˘⟨ +-assoc (x * z) (- x * z) (- x * - y) ⟩
+ x * z + - x * z + - x * - y ≈˘⟨ +-congʳ (+-congˡ (-‿distribˡ-* x z)) ⟩
+ x * z - x * z + - x * - y ≈⟨ +-cong (-‿inverseʳ (x * z)) (-x*-y≈x*y x y) ⟩
+ 0# + x * y ≈⟨ +-identityˡ (x * y) ⟩
+ x * y ∎
+
+x<0⇒*-anti-monoʳ-< : ∀ {x} → x < 0# → (_* x) Preserves _<_ ⟶ _>_
+x<0⇒*-anti-monoʳ-< {x} x<0 {y} {z} y<z = begin-strict
+ z * x ≈˘⟨ +-identityʳ (z * x) ⟩
+ z * x + 0# <⟨ +-monoˡ-< (x>0∧y>0⇒x*y>0 (x<y⇒0<y-x y<z) (x<0⇒-x>0 x<0)) ⟩
+ z * x + (z - y) * - x ≈⟨ +-congˡ (distribʳ (- x) z (- y)) ⟩
+ z * x + (z * - x + - y * - x) ≈˘⟨ +-assoc (z * x) (z * - x) (- y * - x) ⟩
+ z * x + z * - x + - y * - x ≈˘⟨ +-congʳ (+-congˡ (-‿distribʳ-* z x)) ⟩
+ z * x - z * x + - y * - x ≈⟨ +-cong (-‿inverseʳ (z * x)) (-x*-y≈x*y y x) ⟩
+ 0# + y * x ≈⟨ +-identityˡ (y * x) ⟩
+ y * x ∎
+
+-- _≤_
+
+x≥0⇒*-monoˡ-≤ : ∀ {x} → x ≥ 0# → Congruent₁ _≤_ (x *_)
+x≥0⇒*-monoˡ-≤ (inj₁ x>0) y≤z = cong₁+mono₁-<⇒mono₁-≤ *-congˡ (x>0⇒*-monoˡ-< x>0) y≤z
+x≥0⇒*-monoˡ-≤ {x} (inj₂ 0≈x) {y} {z} y≤z = ≤-reflexive (begin-equality
+ x * y ≈˘⟨ *-congʳ 0≈x ⟩
+ 0# * y ≈⟨ zeroˡ y ⟩
+ 0# ≈˘⟨ zeroˡ z ⟩
+ 0# * z ≈⟨ *-congʳ 0≈x ⟩
+ x * z ∎)
+
+x≥0⇒*-monoʳ-≤ : ∀ {x} → x ≥ 0# → Congruent₁ _≤_ (_* x)
+x≥0⇒*-monoʳ-≤ (inj₁ x>0) y≤z = cong₁+mono₁-<⇒mono₁-≤ *-congʳ (x>0⇒*-monoʳ-< x>0) y≤z
+x≥0⇒*-monoʳ-≤ {x} (inj₂ 0≈x) {y} {z} y≤z = ≤-reflexive (begin-equality
+ y * x ≈˘⟨ *-congˡ 0≈x ⟩
+ y * 0# ≈⟨ zeroʳ y ⟩
+ 0# ≈˘⟨ zeroʳ z ⟩
+ z * 0# ≈⟨ *-congˡ 0≈x ⟩
+ z * x ∎)
+
+x≤0⇒*-anti-monoˡ-≤ : ∀ {x} → x ≤ 0# → (x *_) Preserves _≤_ ⟶ _≥_
+x≤0⇒*-anti-monoˡ-≤ (inj₁ x<0) y≤z = cong₁+anti-mono₁-<⇒anti-mono₁-≤ *-congˡ (x<0⇒*-anti-monoˡ-< x<0) y≤z
+x≤0⇒*-anti-monoˡ-≤ {x} (inj₂ x≈0) {y} {z} y≤z = ≤-reflexive (begin-equality
+ x * z ≈⟨ *-congʳ x≈0 ⟩
+ 0# * z ≈⟨ zeroˡ z ⟩
+ 0# ≈˘⟨ zeroˡ y ⟩
+ 0# * y ≈˘⟨ *-congʳ x≈0 ⟩
+ x * y ∎)
+
+x≤0⇒*-anti-monoʳ-≤ : ∀ {x} → x ≤ 0# → (_* x) Preserves _≤_ ⟶ _≥_
+x≤0⇒*-anti-monoʳ-≤ (inj₁ x<0) y≤z = cong₁+anti-mono₁-<⇒anti-mono₁-≤ *-congʳ (x<0⇒*-anti-monoʳ-< x<0) y≤z
+x≤0⇒*-anti-monoʳ-≤ {x} (inj₂ x≈0) {y} {z} y≤z = ≤-reflexive (begin-equality
+ z * x ≈⟨ *-congˡ x≈0 ⟩
+ z * 0# ≈⟨ zeroʳ z ⟩
+ 0# ≈˘⟨ zeroʳ y ⟩
+ y * 0# ≈˘⟨ *-congˡ x≈0 ⟩
+ y * x ∎)
+
+---- Cancellative
+
+-- _≈_
+
+x>0⇒*-cancelˡ : ∀ {x} → x > 0# → Injective _≈_ _≈_ (x *_)
+x>0⇒*-cancelˡ x>0 = mono₁-<⇒cancel₁ (x>0⇒*-monoˡ-< x>0)
+
+x>0⇒*-cancelʳ : ∀ {x} → x > 0# → Injective _≈_ _≈_ (_* x)
+x>0⇒*-cancelʳ x>0 = mono₁-<⇒cancel₁ (x>0⇒*-monoʳ-< x>0)
+
+x<0⇒*-cancelˡ : ∀ {x} → x < 0# → Injective _≈_ _≈_ (x *_)
+x<0⇒*-cancelˡ x<0 = anti-mono₁-<⇒cancel₁ (x<0⇒*-anti-monoˡ-< x<0)
+
+x<0⇒*-cancelʳ : ∀ {x} → x < 0# → Injective _≈_ _≈_ (_* x)
+x<0⇒*-cancelʳ x<0 = anti-mono₁-<⇒cancel₁ (x<0⇒*-anti-monoʳ-< x<0)
+
+-- _<_
+
+x≥0⇒*-cancelˡ-< : ∀ {x} → x ≥ 0# → Injective _<_ _<_ (x *_)
+x≥0⇒*-cancelˡ-< = mono₁-≤⇒cancel₁-< ∘ x≥0⇒*-monoˡ-≤
+
+x≥0⇒*-cancelʳ-< : ∀ {x} → x ≥ 0# → Injective _<_ _<_ (_* x)
+x≥0⇒*-cancelʳ-< = mono₁-≤⇒cancel₁-< ∘ x≥0⇒*-monoʳ-≤
+
+x≤0⇒*-anti-cancelˡ-< : ∀ {x} → x ≤ 0# → Injective _<_ _>_ (x *_)
+x≤0⇒*-anti-cancelˡ-< = anti-mono₁-≤⇒anti-cancel₁-< ∘ x≤0⇒*-anti-monoˡ-≤
+
+x≤0⇒*-anti-cancelʳ-< : ∀ {x} → x ≤ 0# → Injective _<_ _>_ (_* x)
+x≤0⇒*-anti-cancelʳ-< = anti-mono₁-≤⇒anti-cancel₁-< ∘ x≤0⇒*-anti-monoʳ-≤
+
+-- _≤_
+
+x>0⇒*-cancelˡ-≤ : ∀ {x} → x > 0# → Injective _≤_ _≤_ (x *_)
+x>0⇒*-cancelˡ-≤ = mono₁-<⇒cancel₁-≤ ∘ x>0⇒*-monoˡ-<
+
+x>0⇒*-cancelʳ-≤ : ∀ {x} → x > 0# → Injective _≤_ _≤_ (_* x)
+x>0⇒*-cancelʳ-≤ = mono₁-<⇒cancel₁-≤ ∘ x>0⇒*-monoʳ-<
+
+x<0⇒*-anti-cancelˡ-≤ : ∀ {x} → x < 0# → Injective _≤_ _≥_ (x *_)
+x<0⇒*-anti-cancelˡ-≤ = anti-mono₁-<⇒anti-cancel₁-≤ ∘ x<0⇒*-anti-monoˡ-<
+
+x<0⇒*-anti-cancelʳ-≤ : ∀ {x} → x < 0# → Injective _≤_ _≥_ (_* x)
+x<0⇒*-anti-cancelʳ-≤ = anti-mono₁-<⇒anti-cancel₁-≤ ∘ x<0⇒*-anti-monoʳ-<
+
+---- Preserves signs
+
+-- _≈_
+
+x≈0⇒x*y≈0 : ∀ {x} → x ≈ 0# → ∀ y → x * y ≈ 0#
+x≈0⇒x*y≈0 {x} x≈0 y = begin-equality
+ x * y ≈⟨ *-congʳ x≈0 ⟩
+ 0# * y ≈⟨ zeroˡ y ⟩
+ 0# ∎
+
+x≈0⇒y*x≈0 : ∀ {x} → x ≈ 0# → ∀ y → y * x ≈ 0#
+x≈0⇒y*x≈0 {x} x≈0 y = begin-equality
+ y * x ≈⟨ *-congˡ x≈0 ⟩
+ y * 0# ≈⟨ zeroʳ y ⟩
+ 0# ∎
+
+-- _<_
+
+-- Have x>0∧y>0⇒x*y>0 by ring
+
+x>0∧y<0⇒x*y<0 : ∀ {x y} → x > 0# → y < 0# → x * y < 0#
+x>0∧y<0⇒x*y<0 {x} {y} x>0 y<0 = -x>0⇒x<0 (begin-strict
+ 0# <⟨ x>0∧y>0⇒x*y>0 x>0 (x<0⇒-x>0 y<0) ⟩
+ x * - y ≈˘⟨ -‿distribʳ-* x y ⟩
+ - (x * y) ∎)
+
+x<0∧y>0⇒x*y<0 : ∀ {x y} → x < 0# → y > 0# → x * y < 0#
+x<0∧y>0⇒x*y<0 {x} {y} x<0 y>0 = -x>0⇒x<0 (begin-strict
+ 0# <⟨ x>0∧y>0⇒x*y>0 (x<0⇒-x>0 x<0) y>0 ⟩
+ - x * y ≈˘⟨ -‿distribˡ-* x y ⟩
+ - (x * y) ∎)
+
+x<0∧y<0⇒x*y>0 : ∀ {x y} → x < 0# → y < 0# → x * y > 0#
+x<0∧y<0⇒x*y>0 {x} {y} x<0 y<0 = begin-strict
+ 0# <⟨ x>0∧y>0⇒x*y>0 (x<0⇒-x>0 x<0) (x<0⇒-x>0 y<0) ⟩
+ - x * - y ≈⟨ -x*-y≈x*y x y ⟩
+ x * y ∎
+
+-- _≤_
+
+x≥0∧y≥0⇒x*y≥0 : ∀ {x y} → x ≥ 0# → y ≥ 0# → x * y ≥ 0#
+x≥0∧y≥0⇒x*y≥0 {x} {y} (inj₁ x>0) (inj₁ y>0) = <⇒≤ (x>0∧y>0⇒x*y>0 x>0 y>0)
+x≥0∧y≥0⇒x*y≥0 {x} {y} (inj₁ x>0) (inj₂ 0≈y) = ≤-reflexive (Eq.sym (x≈0⇒y*x≈0 (Eq.sym 0≈y) x))
+x≥0∧y≥0⇒x*y≥0 {x} {y} (inj₂ 0≈x) y≥0 = ≤-reflexive (Eq.sym (x≈0⇒x*y≈0 (Eq.sym 0≈x) y))
+
+x≥0∧y≤0⇒x*y≤0 : ∀ {x y} → x ≥ 0# → y ≤ 0# → x * y ≤ 0#
+x≥0∧y≤0⇒x*y≤0 {x} {y} (inj₁ x>0) (inj₁ y<0) = <⇒≤ (x>0∧y<0⇒x*y<0 x>0 y<0)
+x≥0∧y≤0⇒x*y≤0 {x} {y} (inj₁ x>0) (inj₂ y≈0) = ≤-reflexive (x≈0⇒y*x≈0 y≈0 x)
+x≥0∧y≤0⇒x*y≤0 {x} {y} (inj₂ 0≈x) y≤0 = ≤-reflexive (x≈0⇒x*y≈0 (Eq.sym 0≈x) y)
+
+x≤0∧y≥0⇒x*y≤0 : ∀ {x y} → x ≤ 0# → y ≥ 0# → x * y ≤ 0#
+x≤0∧y≥0⇒x*y≤0 {x} {y} (inj₁ x<0) (inj₁ y>0) = <⇒≤ (x<0∧y>0⇒x*y<0 x<0 y>0)
+x≤0∧y≥0⇒x*y≤0 {x} {y} (inj₁ x<0) (inj₂ 0≈y) = ≤-reflexive (x≈0⇒y*x≈0 (Eq.sym 0≈y) x)
+x≤0∧y≥0⇒x*y≤0 {x} {y} (inj₂ x≈0) y≥0 = ≤-reflexive (x≈0⇒x*y≈0 x≈0 y)
+
+x≤0∧y≤0⇒x*y≥0 : ∀ {x y} → x ≤ 0# → y ≤ 0# → x * y ≥ 0#
+x≤0∧y≤0⇒x*y≥0 {x} {y} (inj₁ x<0) (inj₁ y<0) = <⇒≤ (x<0∧y<0⇒x*y>0 x<0 y<0)
+x≤0∧y≤0⇒x*y≥0 {x} {y} (inj₁ x<0) (inj₂ y≈0) = ≤-reflexive (Eq.sym (x≈0⇒y*x≈0 y≈0 x))
+x≤0∧y≤0⇒x*y≥0 {x} {y} (inj₂ x≈0) y≤0 = ≤-reflexive (Eq.sym (x≈0⇒x*y≈0 x≈0 y))
+
+---- Respects signs
+
+-- _<_
+
+-- x>0∧x*y>0⇒y>0
+-- x>0∧x*y<0⇒y<0
+-- x>0∧y*x>0⇒y>0
+-- x>0∧y*x<0⇒y<0
+-- x<0∧x*y>0⇒y<0
+-- x<0∧x*y<0⇒y>0
+-- x<0∧y*x>0⇒y<0
+-- x<0∧y*x<0⇒y>0
+
+-- _≤_
+
+-- x>0∧x*y≥0⇒y≥0
+-- x>0∧x*y≤0⇒y≤0
+-- x>0∧y*x≥0⇒y≥0
+-- x>0∧y*x≤0⇒y≤0
+-- x<0∧x*y≥0⇒y≤0
+-- x<0∧x*y≤0⇒y≥0
+-- x<0∧y*x≥0⇒y≤0
+-- x<0∧y*x≤0⇒y≥0
+
+--------------------------------------------------------------------------------
+---- Properties of 0 and 1
+
+0≤1 : 0# ≤ 1#
+0≤1 = ≮⇒≥ (λ 0>1 → <-asym 0>1 (begin-strict
+ 0# <⟨ x<0∧y<0⇒x*y>0 0>1 0>1 ⟩
+ 1# * 1# ≈⟨ *-identity² ⟩
+ 1# ∎))
+
+1≈0⇒x≈y : ∀ {x y} → 1# ≈ 0# → x ≈ y
+1≈0⇒x≈y {x} {y} 1≈0 = begin-equality
+ x ≈˘⟨ *-identityʳ x ⟩
+ x * 1# ≈⟨ x≈0⇒y*x≈0 1≈0 x ⟩
+ 0# ≈˘⟨ x≈0⇒y*x≈0 1≈0 y ⟩
+ y * 1# ≈⟨ *-identityʳ y ⟩
+ y ∎
+
+x<y⇒0<1 : ∀ {x y} → x < y → 0# < 1#
+x<y⇒0<1 x<y = ≤∧≉⇒< 0≤1 (<⇒≉ x<y ∘ 1≈0⇒x≈y ∘ Eq.sym)
+
+--------------------------------------------------------------------------------
+---- Properties of _*_ (again)
+
+---- Preserves size
+
+-- _<_
+
+x>1∧y≥1⇒x*y>1 : ∀ {x y} → x > 1# → y ≥ 1# → x * y > 1#
+x>1∧y≥1⇒x*y>1 {x} {y} x>1 y≥1 = begin-strict
+ 1# ≈˘⟨ *-identity² ⟩
+ 1# * 1# <⟨ x>0⇒*-monoʳ-< (x<y⇒0<1 x>1) x>1 ⟩
+ x * 1# ≤⟨ x≥0⇒*-monoˡ-≤ (≤-trans 0≤1 (<⇒≤ x>1)) y≥1 ⟩
+ x * y ∎
+
+x≥1∧y>1⇒x*y>1 : ∀ {x y} → x ≥ 1# → y > 1# → x * y > 1#
+x≥1∧y>1⇒x*y>1 {x} {y} x≥1 y>1 = begin-strict
+ 1# ≈˘⟨ *-identity² ⟩
+ 1# * 1# <⟨ x>0⇒*-monoˡ-< (x<y⇒0<1 y>1) y>1 ⟩
+ 1# * y ≤⟨ x≥0⇒*-monoʳ-≤ (≤-trans 0≤1 (<⇒≤ y>1)) x≥1 ⟩
+ x * y ∎
+
+0≤x<1∧y≤1⇒x*y<1 : ∀ {x y} → 0# ≤ x → x < 1# → y ≤ 1# → x * y < 1#
+0≤x<1∧y≤1⇒x*y<1 {x} {y} 0≤x x<1 y≤1 = begin-strict
+ x * y ≤⟨ x≥0⇒*-monoˡ-≤ 0≤x y≤1 ⟩
+ x * 1# <⟨ x>0⇒*-monoʳ-< (x<y⇒0<1 x<1) x<1 ⟩
+ 1# * 1# ≈⟨ *-identity² ⟩
+ 1# ∎
+
+x≤1∧0≤y<1⇒x*y<1 : ∀ {x y} → x ≤ 1# → 0# ≤ y → y < 1# → x * y < 1#
+x≤1∧0≤y<1⇒x*y<1 {x} {y} x≤1 0≤y y<1 = begin-strict
+ x * y ≤⟨ x≥0⇒*-monoʳ-≤ 0≤y x≤1 ⟩
+ 1# * y <⟨ x>0⇒*-monoˡ-< (x<y⇒0<1 y<1) y<1 ⟩
+ 1# * 1# ≈⟨ *-identity² ⟩
+ 1# ∎
+
+-- _≤_
+
+x≥1∧y≥1⇒x*y≥1 : ∀ {x y} → x ≥ 1# → y ≥ 1# → x * y ≥ 1#
+x≥1∧y≥1⇒x*y≥1 {x} {y} x≥1 y≥1 = begin
+ 1# ≈˘⟨ *-identity² ⟩
+ 1# * 1# ≤⟨ x≥0⇒*-monoʳ-≤ 0≤1 x≥1 ⟩
+ x * 1# ≤⟨ x≥0⇒*-monoˡ-≤ (≤-trans 0≤1 x≥1) y≥1 ⟩
+ x * y ∎
+
+0≤x≤1∧y≤1⇒x*y≤1 : ∀ {x y} → 0# ≤ x → x ≤ 1# → y ≤ 1# → x * y ≤ 1#
+0≤x≤1∧y≤1⇒x*y≤1 {x} {y} 0≤x x≤1 y≤1 = begin
+ x * y ≤⟨ x≥0⇒*-monoˡ-≤ 0≤x y≤1 ⟩
+ x * 1# ≤⟨ x≥0⇒*-monoʳ-≤ 0≤1 x≤1 ⟩
+ 1# * 1# ≈⟨ *-identity² ⟩
+ 1# ∎
+
+x≤1∧0≤y≤1⇒x*y≤1 : ∀ {x y} → x ≤ 1# → 0# ≤ y → y ≤ 1# → x * y ≤ 1#
+x≤1∧0≤y≤1⇒x*y≤1 {x} {y} x≤1 0≤y y≤1 = begin
+ x * y ≤⟨ x≥0⇒*-monoʳ-≤ 0≤y x≤1 ⟩
+ 1# * y ≤⟨ x≥0⇒*-monoˡ-≤ 0≤1 y≤1 ⟩
+ 1# * 1# ≈⟨ *-identity² ⟩
+ 1# ∎
+
+---- Miscellaneous
+
+x*x≥0 : ∀ x → x * x ≥ 0#
+x*x≥0 x with compare x 0#
+... | tri< x<0 _ _ = <⇒≤ (x<0∧y<0⇒x*y>0 x<0 x<0)
+... | tri≈ _ x≈0 _ = ≤-reflexive (Eq.sym (x≈0⇒x*y≈0 x≈0 x))
+... | tri> _ _ x>0 = <⇒≤ (x>0∧y>0⇒x*y>0 x>0 x>0)
+
+--------------------------------------------------------------------------------
+---- Properties of _^_
+
+---- Zero
+
+^-zeroˡ : ∀ n → 1# ^ n ≈ 1#
+^-zeroˡ 0 = Eq.refl
+^-zeroˡ (suc n) = begin-equality
+ 1# ^ suc n ≈⟨ ^-homo-* 1# 1 n ⟩
+ 1# * 1# ^ n ≈⟨ *-congˡ (^-zeroˡ n) ⟩
+ 1# * 1# ≈⟨ *-identity² ⟩
+ 1# ∎
+
+^-zeroʳ : ∀ x → x ^ 0 ≈ 1#
+^-zeroʳ x = Eq.refl
+
+---- Identity
+
+^-identityʳ : ∀ x → x ^ 1 ≈ x
+^-identityʳ x = Eq.refl
+
+---- Preserves sign
+
+-- _≤_
+
+x≥0⇒x^n≥0 : ∀ {x} → x ≥ 0# → ∀ n → x ^ n ≥ 0#
+x≥0⇒x^n≥0 {x} x≥0 0 = 0≤1
+x≥0⇒x^n≥0 {x} x≥0 (suc n) = begin
+ 0# ≤⟨ x≥0∧y≥0⇒x*y≥0 x≥0 (x≥0⇒x^n≥0 x≥0 n) ⟩
+ x * x ^ n ≈˘⟨ ^-homo-* x 1 n ⟩
+ x ^ suc n ∎
+
+-- _<_
+
+x>0⇒x^n>0 : ∀ {x} → x > 0# → ∀ n → x ^ n > 0#
+x>0⇒x^n>0 {x} x>0 0 = x<y⇒0<1 x>0
+x>0⇒x^n>0 {x} x>0 (suc n) = begin-strict
+ 0# <⟨ x>0∧y>0⇒x*y>0 x>0 (x>0⇒x^n>0 x>0 n) ⟩
+ x * x ^ n ≈˘⟨ ^-homo-* x 1 n ⟩
+ x ^ suc n ∎
+
+---- Preserves size
+
+-- _≤_
+
+x≥1⇒x^n≥1 : ∀ {x} → x ≥ 1# → ∀ n → x ^ n ≥ 1#
+x≥1⇒x^n≥1 {x} x≥1 0 = ≤-refl
+x≥1⇒x^n≥1 {x} x≥1 (suc n) = begin
+ 1# ≤⟨ x≥1∧y≥1⇒x*y≥1 x≥1 (x≥1⇒x^n≥1 x≥1 n) ⟩
+ x * x ^ n ≈˘⟨ ^-homo-* x 1 n ⟩
+ x ^ suc n ∎
+
+0≤x≤1⇒x^n≤1 : ∀ {x} → 0# ≤ x → x ≤ 1# → ∀ n → x ^ n ≤ 1#
+0≤x≤1⇒x^n≤1 {x} 0≤x x≤1 0 = ≤-refl
+0≤x≤1⇒x^n≤1 {x} 0≤x x≤1 (suc n) = begin
+ x ^ suc n ≈⟨ ^-homo-* x 1 n ⟩
+ x * x ^ n ≤⟨ 0≤x≤1∧y≤1⇒x*y≤1 0≤x x≤1 (0≤x≤1⇒x^n≤1 0≤x x≤1 n) ⟩
+ 1# ∎
+
+-- _<_
+
+x>1∧n≢0⇒x^n>1 : ∀ {x} → x > 1# → ∀ n → ⦃ NonZero n ⦄ → x ^ n > 1#
+x>1∧n≢0⇒x^n>1 {x} x>1 (suc n) = begin-strict
+ 1# <⟨ x>1∧y≥1⇒x*y>1 x>1 (x≥1⇒x^n≥1 (<⇒≤ x>1) n) ⟩
+ x * x ^ n ≈˘⟨ ^-homo-* x 1 n ⟩
+ x ^ suc n ∎
+
+0≤x<1∧n≢0⇒x^n<1 : ∀ {x} → 0# ≤ x → x < 1# → ∀ n → ⦃ NonZero n ⦄ → x ^ n < 1#
+0≤x<1∧n≢0⇒x^n<1 {x} 0≤x x<1 (suc n) = begin-strict
+ x ^ suc n ≈⟨ ^-homo-* x 1 n ⟩
+ x * x ^ n <⟨ 0≤x<1∧y≤1⇒x*y<1 0≤x x<1 (0≤x≤1⇒x^n≤1 0≤x (<⇒≤ x<1) n) ⟩
+ 1# ∎
+
+---- Congruences
+
+-- _≈_
+
+n≢0⇒0^n≈0 : ∀ n → ⦃ NonZero n ⦄ → 0# ^ n ≈ 0#
+n≢0⇒0^n≈0 (suc n) = begin-equality
+ 0# ^ suc n ≈⟨ ^-homo-* 0# 1 n ⟩
+ 0# * 0# ^ n ≈⟨ zeroˡ (0# ^ n) ⟩
+ 0# ∎
+
+-- _≤_
+
+x≥1⇒^-monoˡ-≤ : ∀ {x} → x ≥ 1# → (x ^_) Preserves ℕ._≤_ ⟶ _≤_
+x≥1⇒^-monoˡ-≤ {x} x≥1 {.0} {n} ℕ.z≤n = x≥1⇒x^n≥1 x≥1 n
+x≥1⇒^-monoˡ-≤ {x} x≥1 {.suc m} {.suc n} (ℕ.s≤s m≤n) = begin
+ x ^ suc m ≈⟨ ^-homo-* x 1 m ⟩
+ x * x ^ m ≤⟨ x≥0⇒*-monoˡ-≤ (≤-trans 0≤1 x≥1) (x≥1⇒^-monoˡ-≤ x≥1 m≤n) ⟩
+ x * x ^ n ≈˘⟨ ^-homo-* x 1 n ⟩
+ x ^ suc n ∎
+
+0≤x≤1⇒^-anti-monoˡ-≤ : ∀ {x} → 0# ≤ x → x ≤ 1# → (x ^_) Preserves ℕ._≤_ ⟶ _≥_
+0≤x≤1⇒^-anti-monoˡ-≤ {x} 0≤x x≤1 {.0} {n} ℕ.z≤n = 0≤x≤1⇒x^n≤1 0≤x x≤1 n
+0≤x≤1⇒^-anti-monoˡ-≤ {x} 0≤x x≤1 {.suc m} {.suc n} (ℕ.s≤s m≤n) = begin
+ x ^ suc n ≈⟨ ^-homo-* x 1 n ⟩
+ x * x ^ n ≤⟨ x≥0⇒*-monoˡ-≤ 0≤x (0≤x≤1⇒^-anti-monoˡ-≤ 0≤x x≤1 m≤n) ⟩
+ x * x ^ m ≈˘⟨ ^-homo-* x 1 m ⟩
+ x ^ suc m ∎
+
+-- _<_
+
+x>1⇒^-monoˡ-< : ∀ {x} → x > 1# → (x ^_) Preserves ℕ._<_ ⟶ _<_
+x>1⇒^-monoˡ-< {x} x>1 {m} {.suc n} (ℕ.s≤s m≤n) = begin-strict
+ x ^ m ≤⟨ x≥1⇒^-monoˡ-≤ (<⇒≤ x>1) m≤n ⟩
+ x ^ n ≈˘⟨ *-identityˡ (x ^ n) ⟩
+ 1# * x ^ n <⟨ x>0⇒*-monoʳ-< (x>0⇒x^n>0 (≤-<-trans 0≤1 x>1) n) x>1 ⟩
+ x * x ^ n ≈˘⟨ ^-homo-* x 1 n ⟩
+ x ^ suc n ∎
+
+0<x<1⇒^-anti-monoˡ-< : ∀ {x} → 0# < x → x < 1# → (x ^_) Preserves ℕ._<_ ⟶ _>_
+0<x<1⇒^-anti-monoˡ-< {x} 0<x x<1 {m} {.suc n} (ℕ.s≤s m≤n) = begin-strict
+ x ^ suc n ≈⟨ ^-homo-* x 1 n ⟩
+ x * x ^ n <⟨ x>0⇒*-monoʳ-< (x>0⇒x^n>0 0<x n) x<1 ⟩
+ 1# * x ^ n ≈⟨ *-identityˡ (x ^ n) ⟩
+ x ^ n ≤⟨ 0≤x≤1⇒^-anti-monoˡ-≤ (<⇒≤ 0<x) (<⇒≤ x<1) m≤n ⟩
+ x ^ m ∎