diff options
author | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-04-09 16:24:18 +0100 |
---|---|---|
committer | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-04-09 16:24:18 +0100 |
commit | c6aee22d68aa614619cecc08a15332294a9de0de (patch) | |
tree | 6b589e18b902c21d481bedf278f51123a5f55ac9 /src/Helium/Algebra/Ordered | |
parent | 662ca19ed7dabecdf17cdd555132f106bb768e58 (diff) |
Add some more algebraic properties.
Diffstat (limited to 'src/Helium/Algebra/Ordered')
-rw-r--r-- | src/Helium/Algebra/Ordered/StrictTotal/Properties/DivisionRing.agda | 10 | ||||
-rw-r--r-- | src/Helium/Algebra/Ordered/StrictTotal/Properties/Field.agda | 2 |
2 files changed, 11 insertions, 1 deletions
diff --git a/src/Helium/Algebra/Ordered/StrictTotal/Properties/DivisionRing.agda b/src/Helium/Algebra/Ordered/StrictTotal/Properties/DivisionRing.agda index 3915f07..4469c03 100644 --- a/src/Helium/Algebra/Ordered/StrictTotal/Properties/DivisionRing.agda +++ b/src/Helium/Algebra/Ordered/StrictTotal/Properties/DivisionRing.agda @@ -199,6 +199,16 @@ y>0∧x<y⇒x*y⁻¹<1 {x} {y} y>0 x<y = x≥0⇒*-cancelʳ-< (<⇒≤ y>0) (beg 1# * y ∎) where y≉0 = <⇒≉ y>0 ∘ Eq.sym +y>0∧x≤y⇒x*y⁻¹≤1 : ∀ {x y} (y>0 : y > 0#) → x ≤ y → x * (<⇒≉ y>0 ∘ Eq.sym) ⁻¹ ≤ 1# +y>0∧x≤y⇒x*y⁻¹≤1 {x} {y} y>0 x≤y = x>0⇒*-cancelʳ-≤ y>0 (begin + x * y≉0 ⁻¹ * y ≈⟨ *-assoc x _ y ⟩ + x * (y≉0 ⁻¹ * y) ≈⟨ *-congˡ (⁻¹-inverseˡ y≉0) ⟩ + x * 1# ≈⟨ *-identityʳ x ⟩ + x ≤⟨ x≤y ⟩ + y ≈˘⟨ *-identityˡ y ⟩ + 1# * y ∎) + where y≉0 = <⇒≉ y>0 ∘ Eq.sym + -------------------------------------------------------------------------------- ---- Properties of -_ and _⁻¹ diff --git a/src/Helium/Algebra/Ordered/StrictTotal/Properties/Field.agda b/src/Helium/Algebra/Ordered/StrictTotal/Properties/Field.agda index 79d3b2d..eb46e27 100644 --- a/src/Helium/Algebra/Ordered/StrictTotal/Properties/Field.agda +++ b/src/Helium/Algebra/Ordered/StrictTotal/Properties/Field.agda @@ -126,7 +126,7 @@ open import Helium.Algebra.Ordered.StrictTotal.Properties.DivisionRing divisionR ; -‿⁻¹-comm ; x≉0⇒x⁻¹≉0 - ; y>0∧x<y⇒x*y⁻¹<1 + ; y>0∧x<y⇒x*y⁻¹<1; y>0∧x≤y⇒x*y⁻¹≤1 ) -------------------------------------------------------------------------------- |