summaryrefslogtreecommitdiff
path: root/src/Helium/Data/Pseudocode/Algebra
diff options
context:
space:
mode:
authorGreg Brown <greg.brown@cl.cam.ac.uk>2022-04-04 15:51:22 +0100
committerGreg Brown <greg.brown@cl.cam.ac.uk>2022-04-04 15:51:22 +0100
commit6acd0e87fa8ab2a3230626b37f1cd02181810a1a (patch)
tree21f96be343fc8ad7a8afa595c13d19b408de9e0e /src/Helium/Data/Pseudocode/Algebra
parent4cd820506e0fd2a5595a11555fc2a6206757b3cd (diff)
Add some more ordered division ring properties.
Diffstat (limited to 'src/Helium/Data/Pseudocode/Algebra')
-rw-r--r--src/Helium/Data/Pseudocode/Algebra/Properties.agda13
1 files changed, 2 insertions, 11 deletions
diff --git a/src/Helium/Data/Pseudocode/Algebra/Properties.agda b/src/Helium/Data/Pseudocode/Algebra/Properties.agda
index 3c22216..1c52cda 100644
--- a/src/Helium/Data/Pseudocode/Algebra/Properties.agda
+++ b/src/Helium/Data/Pseudocode/Algebra/Properties.agda
@@ -22,6 +22,7 @@ open import Data.Sum using (_⊎_; inj₁; inj₂; map)
import Data.Unit
open import Function using (_∘_)
import Helium.Algebra.Ordered.StrictTotal.Properties.CommutativeRing as CommRingₚ
+import Helium.Algebra.Ordered.StrictTotal.Properties.Field as Fieldₚ
open import Level using (_⊔_)
open import Relation.Binary.Core using (_Preserves_⟶_)
open import Relation.Binary.Definitions using (tri<; tri≈; tri>)
@@ -77,7 +78,7 @@ module ℝ where
)
module Reasoning = pseudocode.ℝ-Reasoning
- open CommRingₚ commutativeRing public
+ open Fieldₚ realField public
hiding ()
1≉0 : 1ℝ ≉ 0ℝ
@@ -92,16 +93,6 @@ module ℝ where
open ℤ.Reasoning
open pseudocode using (module /1; module ⌊⌋)
- x>0⇒x⁻¹>0 : ∀ {x} → (x≉0 : x ≉ 0ℝ) → x > 0ℝ → x≉0 ⁻¹ > 0ℝ
- x>0⇒x⁻¹>0 {x} x≉0 x>0 = ≰⇒> (λ x⁻¹≤0 → <⇒≱ x>0 (begin
- x ≈˘⟨ *-identityˡ x ⟩
- 1ℝ * x ≈˘⟨ *-congʳ (⁻¹-inverseˡ x≉0) ⟩
- x≉0 ⁻¹ * x * x ≤⟨ x≥0⇒*-monoʳ-≤ (<⇒≤ x>0) (x≤0⇒*-anti-monoˡ-≤ x⁻¹≤0 (<⇒≤ x>0)) ⟩
- x≉0 ⁻¹ * 0ℝ * x ≈⟨ *-congʳ (zeroʳ (x≉0 ⁻¹)) ⟩
- 0ℝ * x ≈⟨ zeroˡ x ⟩
- 0ℝ ∎))
- where open Reasoning
-
record IsMonotoneContinuous (f : ℝ → ℝ) : Set (r₁ ⊔ r₂ ⊔ r₃) where
field
cong : f Preserves _≈_ ⟶ _≈_