diff options
author | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-03-19 17:26:39 +0000 |
---|---|---|
committer | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-03-19 17:26:39 +0000 |
commit | dd97e0a58b377161fb8e9ab7b5524f63b875612c (patch) | |
tree | 564dc6aed1db53c4f0863f3c2e058b29bf64ebc6 /src/Helium/Semantics/Axiomatic/Term.agda | |
parent | 535e4297a08c626d0e2e1923914727f914b8c9bd (diff) |
Add definition of Hoare logic semantics.
Diffstat (limited to 'src/Helium/Semantics/Axiomatic/Term.agda')
-rw-r--r-- | src/Helium/Semantics/Axiomatic/Term.agda | 385 |
1 files changed, 385 insertions, 0 deletions
diff --git a/src/Helium/Semantics/Axiomatic/Term.agda b/src/Helium/Semantics/Axiomatic/Term.agda new file mode 100644 index 0000000..2719455 --- /dev/null +++ b/src/Helium/Semantics/Axiomatic/Term.agda @@ -0,0 +1,385 @@ +------------------------------------------------------------------------ +-- Agda Helium +-- +-- Definition of terms for use in assertions +------------------------------------------------------------------------ + +{-# OPTIONS --safe --without-K #-} + +open import Helium.Data.Pseudocode.Types using (RawPseudocode) + +module Helium.Semantics.Axiomatic.Term + {b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃} + (rawPseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃) + where + +open RawPseudocode rawPseudocode + +import Data.Bool as Bool +open import Data.Fin as Fin using (Fin; suc) +import Data.Fin.Properties as Finₚ +open import Data.Fin.Patterns +open import Data.Nat as ℕ using (ℕ; suc) +import Data.Nat.Properties as ℕₚ +open import Data.Product using (∃; _×_; _,_; proj₁; proj₂; uncurry; dmap) +open import Data.Vec as Vec using (Vec; []; _∷_; _++_; lookup) +import Data.Vec.Functional as VecF +import Data.Vec.Properties as Vecₚ +open import Data.Vec.Relation.Unary.All as All using (All; []; _∷_) +open import Function using (_∘_; _∘₂_; id; flip) +open import Helium.Data.Pseudocode.Core +import Helium.Data.Pseudocode.Manipulate as M +open import Helium.Semantics.Axiomatic.Core rawPseudocode +open import Level using (_⊔_; lift; lower) +open import Relation.Binary.PropositionalEquality hiding ([_]) renaming (subst to ≡-subst) +open import Relation.Nullary using (does; yes; no; ¬_) +open import Relation.Nullary.Decidable.Core using (True; toWitness) +open import Relation.Nullary.Negation using (contradiction) + +private + variable + t t′ t₁ t₂ : Type + m n o : ℕ + Γ Δ Σ ts : Vec Type m + +data Term (Σ : Vec Type o) (Γ : Vec Type n) (Δ : Vec Type m) : Type → Set (b₁ ⊔ i₁ ⊔ r₁) where + state : ∀ i → Term Σ Γ Δ (lookup Σ i) + var : ∀ i → Term Σ Γ Δ (lookup Γ i) + meta : ∀ i → Term Σ Γ Δ (lookup Δ i) + func : Transform ts t → All (Term Σ Γ Δ) ts → Term Σ Γ Δ t + +castType : Term Σ Γ Δ t → t ≡ t′ → Term Σ Γ Δ t′ +castType (state i) refl = state i +castType (var i) refl = var i +castType (meta i) refl = meta i +castType (func f ts) eq = func (≡-subst (Transform _) eq f) ts + +substState : Term Σ Γ Δ t → ∀ i → Term Σ Γ Δ (lookup Σ i) → Term Σ Γ Δ t +substState (state i) j t′ with i Fin.≟ j +... | yes refl = t′ +... | no _ = state i +substState (var i) j t′ = var i +substState (meta i) j t′ = meta i +substState (func f ts) j t′ = func f (helper ts j t′) + where + helper : ∀ {n ts} → All (Term Σ Γ Δ) {n} ts → ∀ i → Term Σ Γ Δ (lookup Σ i) → All (Term Σ Γ Δ) ts + helper [] i t′ = [] + helper (t ∷ ts) i t′ = substState t i t′ ∷ helper ts i t′ + +substVar : Term Σ Γ Δ t → ∀ i → Term Σ Γ Δ (lookup Γ i) → Term Σ Γ Δ t +substVar (state i) j t′ = state i +substVar (var i) j t′ with i Fin.≟ j +... | yes refl = t′ +... | no _ = var i +substVar (meta i) j t′ = meta i +substVar (func f ts) j t′ = func f (helper ts j t′) + where + helper : ∀ {n ts} → All (Term Σ Γ Δ) {n} ts → ∀ i → Term Σ Γ Δ (lookup Γ i) → All (Term Σ Γ Δ) ts + helper [] i t′ = [] + helper (t ∷ ts) i t′ = substVar t i t′ ∷ helper ts i t′ + +substVars : Term Σ Γ Δ t → All (Term Σ ts Δ) Γ → Term Σ ts Δ t +substVars (state i) ts = state i +substVars (var i) ts = All.lookup i ts +substVars (meta i) ts = meta i +substVars (func f ts′) ts = func f (helper ts′ ts) + where + helper : ∀ {ts ts′} → All (Term Σ Γ Δ) {n} ts → All (Term {n = m} Σ ts′ Δ) Γ → All (Term Σ ts′ Δ) ts + helper [] ts = [] + helper (t ∷ ts′) ts = substVars t ts ∷ helper ts′ ts + +elimVar : Term Σ (t′ ∷ Γ) Δ t → Term Σ Γ Δ t′ → Term Σ Γ Δ t +elimVar (state i) t′ = state i +elimVar (var 0F) t′ = t′ +elimVar (var (suc i)) t′ = var i +elimVar (meta i) t′ = meta i +elimVar (func f ts) t′ = func f (helper ts t′) + where + helper : ∀ {n ts} → All (Term Σ (_ ∷ Γ) Δ) {n} ts → Term Σ Γ Δ _ → All (Term Σ Γ Δ) ts + helper [] t′ = [] + helper (t ∷ ts) t′ = elimVar t t′ ∷ helper ts t′ + +wknVar : Term Σ Γ Δ t → Term Σ (t′ ∷ Γ) Δ t +wknVar (state i) = state i +wknVar (var i) = var (suc i) +wknVar (meta i) = meta i +wknVar (func f ts) = func f (helper ts) + where + helper : ∀ {n ts} → All (Term Σ Γ Δ) {n} ts → All (Term Σ (_ ∷ Γ) Δ) ts + helper [] = [] + helper (t ∷ ts) = wknVar t ∷ helper ts + +wknVars : (ts : Vec Type n) → Term Σ Γ Δ t → Term Σ (ts ++ Γ) Δ t +wknVars τs (state i) = state i +wknVars τs (var i) = castType (var (Fin.raise (Vec.length τs) i)) (Vecₚ.lookup-++ʳ τs _ i) +wknVars τs (meta i) = meta i +wknVars τs (func f ts) = func f (helper ts) + where + helper : ∀ {n ts} → All (Term Σ Γ Δ) {n} ts → All (Term Σ (τs ++ Γ) Δ) ts + helper [] = [] + helper (t ∷ ts) = wknVars τs t ∷ helper ts + +addVars : Term Σ [] Δ t → Term Σ Γ Δ t +addVars (state i) = state i +addVars (meta i) = meta i +addVars (func f ts) = func f (helper ts) + where + helper : ∀ {n ts} → All (Term Σ [] Δ) {n} ts → All (Term Σ Γ Δ) ts + helper [] = [] + helper (t ∷ ts) = addVars t ∷ helper ts + +wknMetaAt : ∀ i → Term Σ Γ Δ t → Term Σ Γ (Vec.insert Δ i t′) t +wknMetaAt′ : ∀ i → All (Term Σ Γ Δ) ts → All (Term Σ Γ (Vec.insert Δ i t′)) ts + +wknMetaAt i (state j) = state j +wknMetaAt i (var j) = var j +wknMetaAt i (meta j) = castType (meta (Fin.punchIn i j)) (Vecₚ.insert-punchIn _ i _ j) +wknMetaAt i (func f ts) = func f (wknMetaAt′ i ts) + +wknMetaAt′ i [] = [] +wknMetaAt′ i (t ∷ ts) = wknMetaAt i t ∷ wknMetaAt′ i ts + +wknMeta : Term Σ Γ Δ t → Term Σ Γ (t′ ∷ Δ) t +wknMeta = wknMetaAt 0F + +wknMeta′ : All (Term Σ Γ Δ) ts → All (Term Σ Γ (t′ ∷ Δ)) ts +wknMeta′ = wknMetaAt′ 0F + +wknMetas : (ts : Vec Type n) → Term Σ Γ Δ t → Term Σ Γ (ts ++ Δ) t +wknMetas τs (state i) = state i +wknMetas τs (var i) = var i +wknMetas τs (meta i) = castType (meta (Fin.raise (Vec.length τs) i)) (Vecₚ.lookup-++ʳ τs _ i) +wknMetas τs (func f ts) = func f (helper ts) + where + helper : ∀ {n ts} → All (Term Σ Γ Δ) {n} ts → All (Term Σ Γ (τs ++ Δ)) ts + helper [] = [] + helper (t ∷ ts) = wknMetas τs t ∷ helper ts + +func₀ : ⟦ t ⟧ₜ → Term Σ Γ Δ t +func₀ f = func (λ _ → f) [] + +func₁ : (⟦ t ⟧ₜ → ⟦ t′ ⟧ₜ) → Term Σ Γ Δ t → Term Σ Γ Δ t′ +func₁ f t = func (λ (x , _) → f x) (t ∷ []) + +func₂ : (⟦ t₁ ⟧ₜ → ⟦ t₂ ⟧ₜ → ⟦ t′ ⟧ₜ) → Term Σ Γ Δ t₁ → Term Σ Γ Δ t₂ → Term Σ Γ Δ t′ +func₂ f t₁ t₂ = func (λ (x , y , _) → f x y) (t₁ ∷ t₂ ∷ []) + +[_][_≟_] : HasEquality t → Term Σ Γ Δ t → Term Σ Γ Δ t → Term Σ Γ Δ bool +[ bool ][ t ≟ t′ ] = func₂ (λ (lift x) (lift y) → lift (does (x Bool.≟ y))) t t′ +[ int ][ t ≟ t′ ] = func₂ (λ (lift x) (lift y) → lift (does (x ≟ᶻ y))) t t′ +[ fin ][ t ≟ t′ ] = func₂ (λ (lift x) (lift y) → lift (does (x Fin.≟ y))) t t′ +[ real ][ t ≟ t′ ] = func₂ (λ (lift x) (lift y) → lift (does (x ≟ʳ y))) t t′ +[ bit ][ t ≟ t′ ] = func₂ (λ (lift x) (lift y) → lift (does (x ≟ᵇ₁ y))) t t′ +[ bits ][ t ≟ t′ ] = func₂ (λ xs ys → lift (does (VecF.fromVec (Vec.map lower xs) ≟ᵇ VecF.fromVec (Vec.map lower ys)))) t t′ + +[_][_<?_] : IsNumeric t → Term Σ Γ Δ t → Term Σ Γ Δ t → Term Σ Γ Δ bool +[ int ][ t <? t′ ] = func₂ (λ (lift x) (lift y) → lift (does (x <ᶻ? y))) t t′ +[ real ][ t <? t′ ] = func₂ (λ (lift x) (lift y) → lift (does (x <ʳ? y))) t t′ + +[_][_] : ∀ t → Term Σ Γ Δ (elemType t) → Term Σ Γ Δ (asType t 1) +[ bits ][ t ] = func₁ (_∷ []) t +[ array τ ][ t ] = func₁ (_∷ []) t + +unbox : ∀ t → Term Σ Γ Δ (asType t 1) → Term Σ Γ Δ (elemType t) +unbox bits = func₁ Vec.head +unbox (array t) = func₁ Vec.head + +castV : ∀ {a} {A : Set a} {m n} → .(eq : m ≡ n) → Vec A m → Vec A n +castV {n = 0} eq [] = [] +castV {n = suc n} eq (x ∷ xs) = x ∷ castV (ℕₚ.suc-injective eq) xs + +cast′ : ∀ t → .(eq : m ≡ n) → ⟦ asType t m ⟧ₜ → ⟦ asType t n ⟧ₜ +cast′ bits eq = castV eq +cast′ (array τ) eq = castV eq + +cast : ∀ t → .(eq : m ≡ n) → Term Σ Γ Δ (asType t m) → Term Σ Γ Δ (asType t n) +cast τ eq = func₁ (cast′ τ eq) + +[_][-_] : IsNumeric t → Term Σ Γ Δ t → Term Σ Γ Δ t +[ int ][- t ] = func₁ (lift ∘ ℤ.-_ ∘ lower) t +[ real ][- t ] = func₁ (lift ∘ ℝ.-_ ∘ lower) t + +[_,_,_,_][_+_] : ∀ t₁ t₂ → (isNum₁ : True (isNumeric? t₁)) → (isNum₂ : True (isNumeric? t₂)) → Term Σ Γ Δ t₁ → Term Σ Γ Δ t₂ → Term Σ Γ Δ (combineNumeric t₁ t₂ isNum₁ isNum₂) +[ int , int , _ , _ ][ t + t′ ] = func₂ (λ (lift x) (lift y) → lift (x ℤ.+ y)) t t′ +[ int , real , _ , _ ][ t + t′ ] = func₂ (λ (lift x) (lift y) → lift (x /1 ℝ.+ y)) t t′ +[ real , int , _ , _ ][ t + t′ ] = func₂ (λ (lift x) (lift y) → lift (x ℝ.+ y /1)) t t′ +[ real , real , _ , _ ][ t + t′ ] = func₂ (λ (lift x) (lift y) → lift (x ℝ.+ y)) t t′ + +[_,_,_,_][_*_] : ∀ t₁ t₂ → (isNum₁ : True (isNumeric? t₁)) → (isNum₂ : True (isNumeric? t₂)) → Term Σ Γ Δ t₁ → Term Σ Γ Δ t₂ → Term Σ Γ Δ (combineNumeric t₁ t₂ isNum₁ isNum₂) +[ int , int , _ , _ ][ t * t′ ] = func₂ (λ (lift x) (lift y) → lift (x ℤ.* y)) t t′ +[ int , real , _ , _ ][ t * t′ ] = func₂ (λ (lift x) (lift y) → lift (x /1 ℝ.* y)) t t′ +[ real , int , _ , _ ][ t * t′ ] = func₂ (λ (lift x) (lift y) → lift (x ℝ.* y /1)) t t′ +[ real , real , _ , _ ][ t * t′ ] = func₂ (λ (lift x) (lift y) → lift (x ℝ.* y)) t t′ + +[_][_^_] : IsNumeric t → Term Σ Γ Δ t → ℕ → Term Σ Γ Δ t +[ int ][ t ^ n ] = func₁ (lift ∘ (ℤ′._^′ n) ∘ lower) t +[ real ][ t ^ n ] = func₁ (lift ∘ (ℝ′._^′ n) ∘ lower) t + +2≉0 : Set _ +2≉0 = ¬ 2 ℝ′.×′ 1ℝ ℝ.≈ 0ℝ + +[_][_>>_] : 2≉0 → Term Σ Γ Δ int → ℕ → Term Σ Γ Δ int +[ 2≉0 ][ t >> n ] = func₁ (lift ∘ ⌊_⌋ ∘ (ℝ._* 2≉0 ℝ.⁻¹ ℝ′.^′ n) ∘ _/1 ∘ lower) t + +-- 0 of y is 0 of result +join′ : ∀ t → ⟦ asType t m ⟧ₜ → ⟦ asType t n ⟧ₜ → ⟦ asType t (n ℕ.+ m) ⟧ₜ +join′ bits = flip _++_ +join′ (array t) = flip _++_ + +take′ : ∀ t m {n} → ⟦ asType t (m ℕ.+ n) ⟧ₜ → ⟦ asType t m ⟧ₜ +take′ bits m = Vec.take m +take′ (array t) m = Vec.take m + +drop′ : ∀ t m {n} → ⟦ asType t (m ℕ.+ n) ⟧ₜ → ⟦ asType t n ⟧ₜ +drop′ bits m = Vec.drop m +drop′ (array t) m = Vec.drop m + +private + m≤n⇒m+k≡n : ∀ {m n} → m ℕ.≤ n → ∃ λ k → m ℕ.+ k ≡ n + m≤n⇒m+k≡n ℕ.z≤n = _ , refl + m≤n⇒m+k≡n (ℕ.s≤s m≤n) = dmap id (cong suc) (m≤n⇒m+k≡n m≤n) + + slicedSize : ∀ n m (i : Fin (suc n)) → ∃ λ k → n ℕ.+ m ≡ Fin.toℕ i ℕ.+ (m ℕ.+ k) × Fin.toℕ i ℕ.+ k ≡ n + slicedSize n m i = k , (begin + n ℕ.+ m ≡˘⟨ cong (ℕ._+ m) (proj₂ i+k≡n) ⟩ + (Fin.toℕ i ℕ.+ k) ℕ.+ m ≡⟨ ℕₚ.+-assoc (Fin.toℕ i) k m ⟩ + Fin.toℕ i ℕ.+ (k ℕ.+ m) ≡⟨ cong (Fin.toℕ i ℕ.+_) (ℕₚ.+-comm k m) ⟩ + Fin.toℕ i ℕ.+ (m ℕ.+ k) ∎) , + proj₂ i+k≡n + where + open ≡-Reasoning + i+k≡n = m≤n⇒m+k≡n (ℕₚ.≤-pred (Finₚ.toℕ<n i)) + k = proj₁ i+k≡n + +-- 0 of x is i of result +splice′ : ∀ t → ⟦ asType t m ⟧ₜ → ⟦ asType t n ⟧ₜ → ⟦ fin (suc n) ⟧ₜ → ⟦ asType t (n ℕ.+ m) ⟧ₜ +splice′ {m = m} t x y (lift i) = cast′ t eq (join′ t (join′ t high x) low) + where + reasoning = slicedSize _ m i + k = proj₁ reasoning + n≡i+k = sym (proj₂ (proj₂ reasoning)) + low = take′ t (Fin.toℕ i) (cast′ t n≡i+k y) + high = drop′ t (Fin.toℕ i) (cast′ t n≡i+k y) + eq = sym (proj₁ (proj₂ reasoning)) + +splice : ∀ t → Term Σ Γ Δ (asType t m) → Term Σ Γ Δ (asType t n) → Term Σ Γ Δ (fin (suc n)) → Term Σ Γ Δ (asType t (n ℕ.+ m)) +splice τ t₁ t₂ t′ = func (λ (x , y , i , _) → splice′ τ x y i) (t₁ ∷ t₂ ∷ t′ ∷ []) + +-- i of x is 0 of first +cut′ : ∀ t → ⟦ asType t (n ℕ.+ m) ⟧ₜ → ⟦ fin (suc n) ⟧ₜ → ⟦ asType t m ∷ asType t n ∷ [] ⟧ₜ′ +cut′ {m = m} t x (lift i) = middle , cast′ t i+k≡n (join′ t high low) , _ + where + reasoning = slicedSize _ m i + k = proj₁ reasoning + i+k≡n = proj₂ (proj₂ reasoning) + eq = proj₁ (proj₂ reasoning) + low = take′ t (Fin.toℕ i) (cast′ t eq x) + middle = take′ t m (drop′ t (Fin.toℕ i) (cast′ t eq x)) + high = drop′ t m (drop′ t (Fin.toℕ i) (cast′ t eq x)) + +cut : ∀ t → Term Σ Γ Δ (asType t (n ℕ.+ m)) → Term Σ Γ Δ (fin (suc n)) → Term Σ Γ Δ (tuple _ (asType t m ∷ asType t n ∷ [])) +cut τ t t′ = func₂ (cut′ τ) t t′ + +flatten : ∀ {ms : Vec ℕ n} → ⟦ Vec.map fin ms ⟧ₜ′ → All Fin ms +flatten {ms = []} _ = [] +flatten {ms = _ ∷ ms} (lift x , xs) = x ∷ flatten xs + +𝒦 : Literal t → Term Σ Γ Δ t +𝒦 (x ′b) = func₀ (lift x) +𝒦 (x ′i) = func₀ (lift (x ℤ′.×′ 1ℤ)) +𝒦 (x ′f) = func₀ (lift x) +𝒦 (x ′r) = func₀ (lift (x ℝ′.×′ 1ℝ)) +𝒦 (x ′x) = func₀ (lift (Bool.if x then 1𝔹 else 0𝔹)) +𝒦 ([] ′xs) = func₀ [] +𝒦 ((x ∷ xs) ′xs) = func₂ (flip Vec._∷ʳ_) (𝒦 (x ′x)) (𝒦 (xs ′xs)) +𝒦 (x ′a) = func₁ Vec.replicate (𝒦 x) + +module _ (2≉0 : 2≉0) where + ℰ : Code.Expression Σ Γ t → Term Σ Γ Δ t + ℰ e = (uncurry helper) (M.elimFunctions e) + where + 1+m⊔n≡1+k : ∀ m n → ∃ λ k → suc m ℕ.⊔ n ≡ suc k + 1+m⊔n≡1+k m 0 = m , refl + 1+m⊔n≡1+k m (suc n) = m ℕ.⊔ n , refl + + pull-0₂ : ∀ {x y} → x ℕ.⊔ y ≡ 0 → x ≡ 0 + pull-0₂ {0} {0} refl = refl + pull-0₂ {0} {suc y} () + + pull-0₃ : ∀ {x y z} → x ℕ.⊔ y ℕ.⊔ z ≡ 0 → x ≡ 0 + pull-0₃ {0} {0} {0} refl = refl + pull-0₃ {0} {suc y} {0} () + pull-0₃ {suc x} {0} {0} () + pull-0₃ {suc x} {0} {suc z} () + + pull-1₃ : ∀ x {y z} → x ℕ.⊔ y ℕ.⊔ z ≡ 0 → y ≡ 0 + pull-1₃ 0 {0} {0} refl = refl + pull-1₃ 0 {suc y} {0} () + pull-1₃ (suc x) {0} {0} () + pull-1₃ (suc x) {0} {suc z} () + + pull-last : ∀ {x y} → x ℕ.⊔ y ≡ 0 → y ≡ 0 + pull-last {0} {0} refl = refl + pull-last {suc x} {0} () + + helper : ∀ (e : Code.Expression Σ Γ t) → M.callDepth e ≡ 0 → Term Σ Γ Δ t + helper (Code.lit x) eq = 𝒦 x + helper (Code.state i) eq = state i + helper (Code.var i) eq = var i + helper (Code.abort e) eq = func₁ (λ ()) (helper e eq) + helper (Code._≟_ {hasEquality = hasEq} e e₁) eq = [ toWitness hasEq ][ helper e (pull-0₂ eq) ≟ helper e₁ (pull-last eq) ] + helper (Code._<?_ {isNumeric = isNum} e e₁) eq = [ toWitness isNum ][ helper e (pull-0₂ eq) <? helper e₁ (pull-last eq) ] + helper (Code.inv e) eq = func₁ (lift ∘ Bool.not ∘ lower) (helper e eq) + helper (e Code.&& e₁) eq = func₂ (λ (lift x) (lift y) → lift (x Bool.∧ y)) (helper e (pull-0₂ eq)) (helper e₁ (pull-last eq)) + helper (e Code.|| e₁) eq = func₂ (λ (lift x) (lift y) → lift (x Bool.∨ y)) (helper e (pull-0₂ eq)) (helper e₁ (pull-last eq)) + helper (Code.not e) eq = func₁ (Vec.map (lift ∘ 𝔹.¬_ ∘ lower)) (helper e eq) + helper (e Code.and e₁) eq = func₂ (λ xs ys → Vec.zipWith (λ (lift x) (lift y) → lift (x 𝔹.∧ y)) xs ys) (helper e (pull-0₂ eq)) (helper e₁ (pull-last eq)) + helper (e Code.or e₁) eq = func₂ (λ xs ys → Vec.zipWith (λ (lift x) (lift y) → lift (x 𝔹.∨ y)) xs ys) (helper e (pull-0₂ eq)) (helper e₁ (pull-last eq)) + helper (Code.[_] {t = t} e) eq = [ t ][ helper e eq ] + helper (Code.unbox {t = t} e) eq = unbox t (helper e eq) + helper (Code.splice {t = t} e e₁ e₂) eq = splice t (helper e (pull-0₃ eq)) (helper e₁ (pull-1₃ (M.callDepth e) eq)) (helper e₂ (pull-last eq)) + helper (Code.cut {t = t} e e₁) eq = cut t (helper e (pull-0₂ eq)) (helper e₁ (pull-last eq)) + helper (Code.cast {t = t} i≡j e) eq = cast t i≡j (helper e eq) + helper (Code.-_ {isNumeric = isNum} e) eq = [ toWitness isNum ][- helper e eq ] + helper (Code._+_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁) eq = [ _ , _ , isNum₁ , isNum₂ ][ helper e (pull-0₂ eq) + helper e₁ (pull-last eq) ] + helper (Code._*_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁) eq = [ _ , _ , isNum₁ , isNum₂ ][ helper e (pull-0₂ eq) * helper e₁ (pull-last eq) ] + helper (Code._^_ {isNumeric = isNum} e y) eq = [ toWitness isNum ][ helper e eq ^ y ] + helper (e Code.>> n) eq = [ 2≉0 ][ helper e eq >> n ] + helper (Code.rnd e) eq = func₁ (lift ∘ ⌊_⌋ ∘ lower) (helper e eq) + helper (Code.fin f e) eq = func₁ (lift ∘ f ∘ flatten) (helper e eq) + helper (Code.asInt e) eq = func₁ (lift ∘ (ℤ′._×′ 1ℤ) ∘ Fin.toℕ ∘ lower) (helper e eq) + helper Code.nil eq = func₀ _ + helper (Code.cons e e₁) eq = func₂ _,_ (helper e (pull-0₂ eq)) (helper e₁ (pull-last eq)) + helper (Code.head e) eq = func₁ proj₁ (helper e eq) + helper (Code.tail e) eq = func₁ proj₂ (helper e eq) + helper (Code.call f es) eq = contradiction (trans (sym eq) (proj₂ (1+m⊔n≡1+k (M.funCallDepth f) (M.callDepth′ es)))) ℕₚ.0≢1+n + helper (Code.if e then e₁ else e₂) eq = func (λ (lift b , x , x₁ , _) → Bool.if b then x else x₁) (helper e (pull-0₃ eq) ∷ helper e₁ (pull-1₃ (M.callDepth e) eq) ∷ helper e₂ (pull-last eq) ∷ []) + + ℰ′ : All (Code.Expression Σ Γ) ts → All (Term Σ Γ Δ) ts + ℰ′ [] = [] + ℰ′ (e ∷ es) = ℰ e ∷ ℰ′ es + + subst : Term Σ Γ Δ t → {e : Code.Expression Σ Γ t′} → Code.CanAssign Σ e → Term Σ Γ Δ t′ → Term Σ Γ Δ t + subst t (Code.state i) t′ = substState t i t′ + subst t (Code.var i) t′ = substVar t i t′ + subst t (Code.abort e) t′ = func₁ (λ ()) (ℰ e) + subst t (Code.[_] {t = τ} ref) t′ = subst t ref (unbox τ t′) + subst t (Code.unbox {t = τ} ref) t′ = subst t ref [ τ ][ t′ ] + subst t (Code.splice {t = τ} ref ref₁ e₃) t′ = subst (subst t ref (func₁ proj₁ (cut τ t′ (ℰ e₃)))) ref₁ (func₁ (proj₁ ∘ proj₂) (cut τ t′ (ℰ e₃))) + subst t (Code.cut {t = τ} ref e₂) t′ = subst t ref (splice τ (func₁ proj₁ t′) (func₁ (proj₁ ∘ proj₂) t′) (ℰ e₂)) + subst t (Code.cast {t = τ} eq ref) t′ = subst t ref (cast τ (sym eq) t′) + subst t Code.nil t′ = t + subst t (Code.cons ref ref₁) t′ = subst (subst t ref (func₁ proj₁ t′)) ref₁ (func₁ proj₂ t′) + subst t (Code.head {e = e} ref) t′ = subst t ref (func₂ _,_ t′ (func₁ proj₂ (ℰ e))) + subst t (Code.tail {t = τ} {e = e} ref) t′ = subst t ref (func₂ {t₁ = τ} _,_ (func₁ proj₁ (ℰ e)) t′) + +⟦_⟧ : Term Σ Γ Δ t → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Δ ⟧ₜ′ → ⟦ t ⟧ₜ +⟦_⟧′ : ∀ {ts} → All (Term Σ Γ Δ) {n} ts → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Δ ⟧ₜ′ → ⟦ ts ⟧ₜ′ + +⟦ state i ⟧ σ γ δ = fetch i σ +⟦ var i ⟧ σ γ δ = fetch i γ +⟦ meta i ⟧ σ γ δ = fetch i δ +⟦ func f ts ⟧ σ γ δ = f (⟦ ts ⟧′ σ γ δ) + +⟦ [] ⟧′ σ γ δ = _ +⟦ t ∷ ts ⟧′ σ γ δ = ⟦ t ⟧ σ γ δ , ⟦ ts ⟧′ σ γ δ |