diff options
author | Greg Brown <greg.brown@cl.cam.ac.uk> | 2021-12-28 02:46:50 +0000 |
---|---|---|
committer | Greg Brown <greg.brown@cl.cam.ac.uk> | 2021-12-28 03:01:55 +0000 |
commit | 5052a3f5ddf5cc65bb5a19e644b01694ba34d0f5 (patch) | |
tree | c5bd19c15db0d3c6d1d6a793719c44f34cd658df /src/Helium/Semantics/Denotational/Core.agda | |
parent | 87913c4014f01a23d608457e379b74aa1befd4ab (diff) |
Make the denotational semantics total.
Diffstat (limited to 'src/Helium/Semantics/Denotational/Core.agda')
-rw-r--r-- | src/Helium/Semantics/Denotational/Core.agda | 136 |
1 files changed, 58 insertions, 78 deletions
diff --git a/src/Helium/Semantics/Denotational/Core.agda b/src/Helium/Semantics/Denotational/Core.agda index 359fbd4..d92c1b2 100644 --- a/src/Helium/Semantics/Denotational/Core.agda +++ b/src/Helium/Semantics/Denotational/Core.agda @@ -14,13 +14,14 @@ module Helium.Semantics.Denotational.Core open import Algebra.Core open import Data.Bool as Bool using (Bool) open import Data.Fin hiding (lift) -open import Data.Maybe using (Maybe; just; nothing; map; _>>=_) open import Data.Nat using (ℕ; zero; suc) import Data.Nat.Properties as ℕₚ -open import Data.Product using (_×_; _,_; map₂; uncurry) +open import Data.Product hiding (_<*>_; _,′_) open import Data.Product.Nary.NonDependent +open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]′) open import Data.Unit using (⊤) -open import Level renaming (suc to ℓsuc) hiding (lift) +open import Level renaming (suc to ℓsuc) hiding (zero) +open import Function using (_∘_; _∘₂_; _|>_) open import Function.Nary.NonDependent.Base open import Relation.Nullary.Decidable using (True) @@ -42,122 +43,101 @@ private update zero y (_ , xs) = y , xs update (suc i) y (x , xs) = x , update i y xs +PureExpr : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′) +PureExpr n Γ τ = (σ : State) → (ρ : Product⊤ n Γ) → τ + Expr : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′) -Expr _ Γ τ = (σ : State) → (ρ : Product⊤ _ Γ) → Maybe (State × τ) +Expr n Γ τ = (σ : State) → (ρ : Product⊤ n Γ) → State × τ + record Reference n {ls} (Γ : Sets n ls) (τ : Set ℓ) : Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′) where field - get : Expr n Γ τ - set : (σ : State) → (ρ : Product⊤ _ Γ) → τ → Maybe (State × Product⊤ _ Γ) - -Statement : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′) -Statement n Γ τ = (cont : Expr n Γ τ) → Expr n Γ τ - -ForStatement : ∀ n {ls} → Sets n ls → Set ℓ → ℕ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′) -ForStatement n Γ τ m = (cont break : Expr n Γ τ) → Expr (suc n) (Fin m , Γ) τ + get : PureExpr n Γ τ + set : τ → (σ : State) → (ρ : Product⊤ n Γ) → State × Product⊤ n Γ Function : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′) -Function = Statement +Function = Expr Procedure : ∀ n {ls} → Sets n ls → Set (⨆ n ls ⊔ ℓ′) Procedure n Γ = Function n Γ ⊤ +Block : ∀ n {ls} → Sets n ls → Set ℓ → Set (ℓ ⊔ ⨆ n ls ⊔ ℓ′) +Block n Γ τ = (σ : State) → (ρ : Product⊤ n Γ) → State × (Product⊤ n Γ ⊎ τ) + -- Expressions -unknown : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ τ -unknown σ ρ = nothing +pure′ : ∀ {n ls} {Γ : Sets n ls} → τ → PureExpr n Γ τ +pure′ v σ ρ = v pure : ∀ {n ls} {Γ : Sets n ls} → τ → Expr n Γ τ -pure v σ ρ = just (σ , v) +pure v σ ρ = σ , v -apply : ∀ {n ls} {Γ : Sets n ls} → (τ → τ′) → Expr n Γ τ → Expr n Γ τ′ -apply f e σ ρ = map (map₂ f) (e σ ρ) +↓_ : ∀ {n ls} {Γ : Sets n ls} → PureExpr n Γ τ → Expr n Γ τ +(↓ e) σ ρ = σ , e σ ρ _<*>_ : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (τ → τ′) → Expr n Γ τ → Expr n Γ τ′ -_<*>_ f e σ ρ = f σ ρ >>= λ (σ , f) → apply f e σ ρ +_<*>_ f e σ ρ = f σ ρ |> λ (σ , f) → map₂ f (e σ ρ) -!_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Expr n Γ τ +!_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → PureExpr n Γ τ ! r = Reference.get r +↓!_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Expr n Γ τ +↓! r = ↓ ! r + call : ∀ {m n ls₁ ls₂} {Γ : Sets m ls₁} {Δ : Sets n ls₂} → Function m Γ τ → Expr n Δ (Product m Γ) → Expr n Δ τ -call f e σ ρ = e σ ρ >>= λ (σ , v) → f unknown σ (toProduct⊤ _ v) +call f e σ ρ = e σ ρ |> map₂ (toProduct⊤ _) |> uncurry f + +declare : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ τ → Expr (suc n) (τ , Γ) τ′ → Expr n Γ τ′ +declare e s σ ρ = e σ ρ |> map₂ (_, ρ) |> uncurry s -- References var : ∀ {n ls} {Γ : Sets n ls} i → Reference n Γ (Projₙ Γ i) var i = record - { get = λ σ ρ → just (σ , projₙ _ i (toProduct _ ρ)) - ; set = λ σ ρ v → just (σ , update i v ρ) + { get = λ σ ρ → projₙ _ i (toProduct _ ρ) + ; set = λ v → curry (map₂ (update i v)) } -!#_ : ∀ {n ls} {Γ : Sets n ls} m {m<n : True (suc m ℕₚ.≤? n)} → Expr n Γ (Projₙ Γ (#_ m {n} {m<n})) -(!# m) {m<n} = ! (var (#_ m {m<n = m<n})) - -wknRef : ∀ {m ls} {Γ : Sets m ls} → Reference m Γ τ → Reference (suc m) (τ′ , Γ) τ -wknRef &x = record - { get = λ σ (_ , ρ) → Reference.get &x σ ρ - ; set = λ σ (v , ρ) x → Reference.set &x σ ρ x >>= λ (σ , ρ) → just (σ , (v , ρ)) - } +!#_ : ∀ {n ls} {Γ : Sets n ls} m {m<n : True (suc m ℕₚ.≤? n)} → PureExpr n Γ (Projₙ Γ (#_ m {n} {m<n})) +(!# m) {m<n} = ! var (#_ m {m<n = m<n}) _,′_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Reference n Γ τ′ → Reference n Γ (τ × τ′) &x ,′ &y = record - { get = λ σ ρ → Reference.get &x σ ρ >>= λ (σ , x) → Reference.get &y σ ρ >>= λ (σ , y) → just (σ , (x , y)) - ; set = λ σ ρ (x , y) → Reference.set &x σ ρ x >>= λ (σ , ρ) → Reference.set &y σ ρ y + { get = λ σ ρ → Reference.get &x σ ρ , Reference.get &y σ ρ + ; set = λ (x , y) σ ρ → uncurry (Reference.set &y y) (Reference.set &x x σ ρ) } --- Statements +-- Blocks infixr 1 _∙_ -infix 4 _≔_ _⟵_ infixl 2 if_then_else_ +infix 4 _≔_ _⟵_ -skip : ∀ {n ls} {Γ : Sets n ls} → Statement n Γ τ -skip cont = cont +skip : ∀ {n ls} {Γ : Sets n ls} → Block n Γ τ +skip σ ρ = σ , inj₁ ρ -ignore : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ τ → Statement n Γ τ′ -ignore e cont σ ρ = e σ ρ >>= λ (σ , _) → cont σ ρ +invoke : ∀ {m n ls₁ ls₂} {Γ : Sets m ls₁} {Δ : Sets n ls₂} → Procedure m Γ → Expr n Δ (Product m Γ) → Block n Δ τ +invoke f e σ ρ = call f e σ ρ |> map₂ (λ _ → inj₁ ρ) -return : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ τ → Statement n Γ τ -return e _ = e +_≔_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Expr n Γ τ → Block n Γ τ′ +(&x ≔ e) σ ρ = e σ ρ |> λ (σ , x) → Reference.set &x x σ ρ |> map₂ inj₁ -_≔_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Expr n Γ τ → Statement n Γ τ′ -(ref ≔ e) cont σ ρ = e σ ρ >>= λ (σ , v) → Reference.set ref σ ρ v >>= λ (σ , v) → cont σ v +_⟵_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Op₁ τ → Block n Γ τ′ +&x ⟵ e = &x ≔ ⦇ e (↓ (! &x)) ⦈ -_⟵_ : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ τ → Op₁ τ → Statement n Γ τ′ -ref ⟵ e = ref ≔ ⦇ e (! ref) ⦈ +if_then_else_ : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ Bool → Block n Γ τ → Block n Γ τ → Block n Γ τ +(if e then b₁ else b₂) σ ρ = e σ ρ |> λ (σ , b) → Bool.if b then b₁ σ ρ else b₂ σ ρ -label : ∀ {n ls} {Γ : Sets n ls} → smap _ (Reference n Γ) n Γ ⇉ Statement n Γ τ → Statement n Γ τ -label {n = n} s = uncurry⊤ₙ n s vars +for : ∀ {n ls} {Γ : Sets n ls} m → Block (suc n) (Fin m , Γ) τ → Block n Γ τ +for zero b σ ρ = σ , inj₁ ρ +for (suc m) b σ ρ with b σ (zero , ρ) +... | σ′ , inj₂ x = σ′ , inj₂ x +... | σ′ , inj₁ (_ , ρ′) = for m b′ σ′ ρ′ where - vars : ∀ {n ls} {Γ : Sets n ls} → Product⊤ n (smap _ (Reference n Γ) n Γ) - vars {zero} = _ - vars {suc n} = var (# 0) , mapAll _ _ wknRef vars - -declare : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ τ → Statement (suc n) (τ , Γ) τ′ → Statement n Γ τ′ -declare e s cont σ ρ = e σ ρ >>= λ (σ , v) → s (λ σ (_ , ρ) → cont σ ρ) σ (v , ρ) - -if_then_else_ : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ Bool → Statement n Γ τ → Statement n Γ τ → Statement n Γ τ -(if e then b₁ else b₂) cont σ ρ = e σ ρ >>= λ (σ , b) → Bool.if b then b₁ cont σ ρ else b₂ cont σ ρ - -for : ∀ {n ls} {Γ : Sets n ls} m → ForStatement n Γ τ m → Statement n Γ τ -for zero s cont σ ρ = cont σ ρ -for (suc m) s cont σ ρ = s (for m (λ cont break σ (i , ρ) → s cont break σ (suc i , ρ)) cont) cont σ (# 0 , ρ) - -_∙_ : ∀ {n ls} {Γ : Sets n ls} → Op₂ (Statement n Γ τ) -(s ∙ t) cont = s (t cont) - --- For statements - -infixr 9 _∙′_ - -lift : ∀ {m n ls} {Γ : Sets n ls} → Statement (suc n) (Fin m , Γ) τ → ForStatement n Γ τ m -lift s cont _ = s (λ σ (_ , ρ) → cont σ ρ) - -continue : ∀ {m n ls} {Γ : Sets n ls} → ForStatement n Γ τ m -continue cont break σ (_ , ρ) = cont σ ρ - -break : ∀ {m n ls} {Γ : Sets n ls} → ForStatement n Γ τ m -break cont break σ (_ , ρ) = break σ ρ + b′ : Block (suc _) (Fin m , _) _ + b′ σ (i , ρ) with b σ (suc i , ρ) + ... | σ′ , inj₂ x = σ′ , inj₂ x + ... | σ′ , inj₁ (_ , ρ′) = σ′ , inj₁ (i , ρ′) -_∙′_ : ∀ {m n ls} {Γ : Sets n ls} → Op₂ (ForStatement n Γ τ m) -(s ∙′ t) cont break σ (i , ρ) = s (λ σ ρ → t cont break σ (i , ρ)) break σ (i , ρ) +_∙_ : ∀ {n ls} {Γ : Sets n ls} → Block n Γ τ → Expr n Γ τ → Expr n Γ τ +(b ∙ e) σ τ = b σ τ |> λ (σ , ρ⊎x) → [ e σ , σ ,_ ]′ ρ⊎x |