diff options
author | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-03-19 13:28:42 +0000 |
---|---|---|
committer | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-03-19 13:53:40 +0000 |
commit | 535e4297a08c626d0e2e1923914727f914b8c9bd (patch) | |
tree | 10e9b728083c4c69b80c3a07c4e68bfa025519c8 /src/Helium | |
parent | 78aad93db3d7029e0a9a8517a2db92533fd1f401 (diff) |
Modify pseudocode definition.
This change makes the following changes to the definition of pseudocode:
- Add a separate type `bit` for single-bit values.
- Change `var` and `state` to take `Fin`s instead of bounded naturals.
- Make `[_]` and `unbox` work for any sliced type.
- Generalise `_:_` and `slice` into `splice` and `cut` respectively,
making the two new operations inverses.
- Replace `tup` with `nil` and `cons` for building tuples.
- Add destructors `head` and `tail` for tuple types.
- Make function and procedure calls take a vector of arguments instead
of a tuple.
- Introduce an `if_then_` expression for if statements with a trivial
else branch.
Diffstat (limited to 'src/Helium')
-rw-r--r-- | src/Helium/Data/Pseudocode/Core.agda | 261 | ||||
-rw-r--r-- | src/Helium/Data/Pseudocode/Types.agda | 2 | ||||
-rw-r--r-- | src/Helium/Instructions/Base.agda | 145 | ||||
-rw-r--r-- | src/Helium/Instructions/Instances/Barrett.agda | 4 | ||||
-rw-r--r-- | src/Helium/Semantics/Denotational/Core.agda | 156 |
5 files changed, 319 insertions, 249 deletions
diff --git a/src/Helium/Data/Pseudocode/Core.agda b/src/Helium/Data/Pseudocode/Core.agda index 8a0c4e3..079e2ce 100644 --- a/src/Helium/Data/Pseudocode/Core.agda +++ b/src/Helium/Data/Pseudocode/Core.agda @@ -9,7 +9,8 @@ module Helium.Data.Pseudocode.Core where open import Data.Bool using (Bool; true; false) -open import Data.Fin using (Fin; #_) +open import Data.Fin as Fin using (Fin) +open import Data.Fin.Patterns open import Data.Nat as ℕ using (ℕ; zero; suc) open import Data.Nat.Properties using (+-comm) open import Data.Product using (∃; _,_; proj₂; uncurry) @@ -19,7 +20,7 @@ open import Data.Vec.Relation.Unary.All using (All; []; _∷_; reduce) open import Data.Vec.Relation.Unary.Any using (Any; here; there) open import Function as F using (_∘_; _∘′_; _∋_) open import Relation.Binary.PropositionalEquality using (_≡_; refl) -open import Relation.Nullary using (yes; no) +open import Relation.Nullary using (Dec; yes; no) open import Relation.Nullary.Decidable.Core using (True; False; toWitness; fromWitness; map′) open import Relation.Nullary.Product using (_×-dec_) open import Relation.Nullary.Sum using (_⊎-dec_) @@ -31,18 +32,17 @@ data Type : Set where int : Type fin : (n : ℕ) → Type real : Type + bit : Type bits : (n : ℕ) → Type tuple : ∀ n → Vec Type n → Type array : Type → (n : ℕ) → Type -bit : Type -bit = bits 1 - data HasEquality : Type → Set where bool : HasEquality bool int : HasEquality int fin : ∀ {n} → HasEquality (fin n) real : HasEquality real + bit : HasEquality bit bits : ∀ {n} → HasEquality (bits n) hasEquality? : Decidable HasEquality @@ -50,6 +50,7 @@ hasEquality? bool = yes bool hasEquality? int = yes int hasEquality? (fin n) = yes fin hasEquality? real = yes real +hasEquality? bit = yes bit hasEquality? (bits n) = yes bits hasEquality? (tuple n x) = no (λ ()) hasEquality? (array t n) = no (λ ()) @@ -61,16 +62,17 @@ data IsNumeric : Type → Set where isNumeric? : Decidable IsNumeric isNumeric? bool = no (λ ()) isNumeric? int = yes int -isNumeric? real = yes real isNumeric? (fin n) = no (λ ()) +isNumeric? real = yes real +isNumeric? bit = no (λ ()) isNumeric? (bits n) = no (λ ()) isNumeric? (tuple n x) = no (λ ()) isNumeric? (array t n) = no (λ ()) -combineNumeric : ∀ t₁ t₂ → {isNumeric₁ : True (isNumeric? t₁)} → {isNumeric₂ : True (isNumeric? t₂)} → Type -combineNumeric int int = int -combineNumeric int real = real -combineNumeric real _ = real +combineNumeric : ∀ t₁ t₂ → (isNumeric₁ : True (isNumeric? t₁)) → (isNumeric₂ : True (isNumeric? t₂)) → Type +combineNumeric int int _ _ = int +combineNumeric int real _ _ = real +combineNumeric real _ _ _ = real data Sliced : Set where bits : Sliced @@ -87,12 +89,13 @@ elemType (array t) = t --- Literals data Literal : Type → Set where - _′b : Bool → Literal bool - _′i : ℕ → Literal int - _′f : ∀ {n} → Fin n → Literal (fin n) - _′r : ℕ → Literal real - _′x : ∀ {n} → Vec Bool n → Literal (bits n) - _′a : ∀ {n t} → Literal t → Literal (array t n) + _′b : Bool → Literal bool + _′i : ℕ → Literal int + _′f : ∀ {n} → Fin n → Literal (fin n) + _′r : ℕ → Literal real + _′x : Bool → Literal bit + _′xs : ∀ {n} → Vec Bool n → Literal (bits n) + _′a : ∀ {n t} → Literal t → Literal (array t n) --- Expressions, references, statements, functions and procedures @@ -100,10 +103,8 @@ module Code {o} (Σ : Vec Type o) where data Expression {n} (Γ : Vec Type n) : Type → Set data CanAssign {n Γ} : ∀ {t} → Expression {n} Γ t → Set canAssign? : ∀ {n Γ t} → Decidable (CanAssign {n} {Γ} {t}) - canAssignAll? : ∀ {n Γ m ts} → Decidable {A = All (Expression {n} Γ) {m} ts} (All (CanAssign ∘ proj₂) ∘ (reduce (λ {x} e → x , e))) - data AssignsState {n Γ} : ∀ {t e} → CanAssign {n} {Γ} {t} e → Set - assignsState? : ∀ {n Γ t e} → Decidable (AssignsState {n} {Γ} {t} {e}) - assignsStateAny? : ∀ {n Γ m ts es} → Decidable {A = All (CanAssign ∘ proj₂) (reduce {P = Expression {n} Γ} (λ {x} e → x , e) {m} {ts} es)} (Any (AssignsState ∘ proj₂) ∘ reduce (λ {x} a → x , a)) + data ReferencesState {n Γ} : ∀ {t} → Expression {n} Γ t → Set + referencesState? : ∀ {n Γ t} → Decidable (ReferencesState {n} {Γ} {t}) data Statement {n} (Γ : Vec Type n) : Set data ChangesState {n Γ} : Statement {n} Γ → Set changesState? : ∀ {n Γ} → Decidable (ChangesState {n} {Γ}) @@ -114,55 +115,61 @@ module Code {o} (Σ : Vec Type o) where infixr 7 _^_ infixl 6 _*_ _and_ _>>_ -- infixl 6 _/_ - infixl 5 _+_ _or_ _&&_ _||_ _∶_ + infixl 5 _+_ _or_ _&&_ _||_ infix 4 _≟_ _<?_ data Expression {n} Γ where - lit : ∀ {t} → Literal t → Expression Γ t - state : ∀ i {i<o : True (i ℕ.<? o)} → Expression Γ (lookup Σ (#_ i {m<n = i<o})) - var : ∀ i {i<n : True (i ℕ.<? n)} → Expression Γ (lookup Γ (#_ i {m<n = i<n})) - abort : ∀ {t} → Expression Γ (fin 0) → Expression Γ t - _≟_ : ∀ {t} {hasEquality : True (hasEquality? t)} → Expression Γ t → Expression Γ t → Expression Γ bool - _<?_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → Expression Γ t → Expression Γ bool - inv : Expression Γ bool → Expression Γ bool - _&&_ : Expression Γ bool → Expression Γ bool → Expression Γ bool - _||_ : Expression Γ bool → Expression Γ bool → Expression Γ bool - not : ∀ {m} → Expression Γ (bits m) → Expression Γ (bits m) - _and_ : ∀ {m} → Expression Γ (bits m) → Expression Γ (bits m) → Expression Γ (bits m) - _or_ : ∀ {m} → Expression Γ (bits m) → Expression Γ (bits m) → Expression Γ (bits m) - [_] : ∀ {t} → Expression Γ t → Expression Γ (array t 1) - unbox : ∀ {t} → Expression Γ (array t 1) → Expression Γ t - _∶_ : ∀ {m n t} → Expression Γ (asType t m) → Expression Γ (asType t n) → Expression Γ (asType t (n ℕ.+ m)) - slice : ∀ {i j t} → Expression Γ (asType t (i ℕ.+ j)) → Expression Γ (fin (suc i)) → Expression Γ (asType t j) - cast : ∀ {i j t} → .(eq : i ≡ j) → Expression Γ (asType t i) → Expression Γ (asType t j) - -_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → Expression Γ t - _+_ : ∀ {t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ {isNumeric₁} {isNumeric₂}) - _*_ : ∀ {t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ {isNumeric₁} {isNumeric₂}) + lit : ∀ {t} → Literal t → Expression Γ t + state : ∀ i → Expression Γ (lookup Σ i) + var : ∀ i → Expression Γ (lookup Γ i) + abort : ∀ {t} → Expression Γ (fin 0) → Expression Γ t + _≟_ : ∀ {t} {hasEquality : True (hasEquality? t)} → Expression Γ t → Expression Γ t → Expression Γ bool + _<?_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → Expression Γ t → Expression Γ bool + inv : Expression Γ bool → Expression Γ bool + _&&_ : Expression Γ bool → Expression Γ bool → Expression Γ bool + _||_ : Expression Γ bool → Expression Γ bool → Expression Γ bool + not : ∀ {m} → Expression Γ (bits m) → Expression Γ (bits m) + _and_ : ∀ {m} → Expression Γ (bits m) → Expression Γ (bits m) → Expression Γ (bits m) + _or_ : ∀ {m} → Expression Γ (bits m) → Expression Γ (bits m) → Expression Γ (bits m) + [_] : ∀ {t} → Expression Γ (elemType t) → Expression Γ (asType t 1) + unbox : ∀ {t} → Expression Γ (asType t 1) → Expression Γ (elemType t) + splice : ∀ {m n t} → Expression Γ (asType t m) → Expression Γ (asType t n) → Expression Γ (fin (suc n)) → Expression Γ (asType t (n ℕ.+ m)) + cut : ∀ {m n t} → Expression Γ (asType t (n ℕ.+ m)) → Expression Γ (fin (suc n)) → Expression Γ (tuple 2 (asType t m ∷ asType t n ∷ [])) + cast : ∀ {i j t} → .(eq : i ≡ j) → Expression Γ (asType t i) → Expression Γ (asType t j) + -_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → Expression Γ t + _+_ : ∀ {t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ isNumeric₁ isNumeric₂) + _*_ : ∀ {t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ isNumeric₁ isNumeric₂) -- _/_ : Expression Γ real → Expression Γ real → Expression Γ real - _^_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → ℕ → Expression Γ t - _>>_ : Expression Γ int → ℕ → Expression Γ int - rnd : Expression Γ real → Expression Γ int - fin : ∀ {k ms n} → (All (Fin) ms → Fin n) → Expression Γ (tuple k (map fin ms)) → Expression Γ (fin n) - asInt : ∀ {m} → Expression Γ (fin m) → Expression Γ int - tup : ∀ {m ts} → All (Expression Γ) ts → Expression Γ (tuple m ts) - call : ∀ {t m Δ} → Function Δ t → Expression Γ (tuple m Δ) → Expression Γ t + _^_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → ℕ → Expression Γ t + _>>_ : Expression Γ int → ℕ → Expression Γ int + rnd : Expression Γ real → Expression Γ int + fin : ∀ {k ms n} → (All (Fin) ms → Fin n) → Expression Γ (tuple k (map fin ms)) → Expression Γ (fin n) + asInt : ∀ {m} → Expression Γ (fin m) → Expression Γ int + nil : Expression Γ (tuple 0 []) + cons : ∀ {m t ts} → Expression Γ t → Expression Γ (tuple m ts) → Expression Γ (tuple (suc m) (t ∷ ts)) + head : ∀ {m t ts} → Expression Γ (tuple (suc m) (t ∷ ts)) → Expression Γ t + tail : ∀ {m t ts} → Expression Γ (tuple (suc m) (t ∷ ts)) → Expression Γ (tuple m ts) + call : ∀ {t m Δ} → Function Δ t → All (Expression Γ) {m} Δ → Expression Γ t if_then_else_ : ∀ {t} → Expression Γ bool → Expression Γ t → Expression Γ t → Expression Γ t data CanAssign {n} {Γ} where - state : ∀ i {i<o : True (i ℕ.<? o)} → CanAssign (state i {i<o}) - var : ∀ i {i<n : True (i ℕ.<? n)} → CanAssign (var i {i<n}) - abort : ∀ {t} {e : Expression Γ (fin 0)} → CanAssign (abort {t = t} e) - _∶_ : ∀ {m n t} {e₁ : Expression Γ (asType t m)} {e₂ : Expression Γ (asType t n)} → CanAssign e₁ → CanAssign e₂ → CanAssign (e₁ ∶ e₂) - [_] : ∀ {t} {e : Expression Γ t} → CanAssign e → CanAssign [ e ] - unbox : ∀ {t} {e : Expression Γ (array t 1)} → CanAssign e → CanAssign (unbox e) - slice : ∀ {i j t} {e₁ : Expression Γ (asType t (i ℕ.+ j))} → CanAssign e₁ → (e₂ : Expression Γ (fin (suc i))) → CanAssign (slice e₁ e₂) - cast : ∀ {i j t} {e : Expression Γ (asType t i)} .(eq : i ≡ j) → CanAssign e → CanAssign (cast eq e) - tup : ∀ {m ts} {es : All (Expression Γ) {m} ts} → All (CanAssign ∘ proj₂) (reduce (λ {x} e → x , e) es) → CanAssign (tup es) + state : ∀ i → CanAssign (state i) + var : ∀ i → CanAssign (var i) + abort : ∀ {t} e → CanAssign (abort {t = t} e) + [_] : ∀ {t e} → CanAssign e → CanAssign ([_] {t = t} e) + unbox : ∀ {t e} → CanAssign e → CanAssign (unbox {t = t} e) + splice : ∀ {m n t e₁ e₂} → CanAssign e₁ → CanAssign e₂ → ∀ e₃ → CanAssign (splice {m = m} {n} {t} e₁ e₂ e₃) + cut : ∀ {m n t e₁} → CanAssign e₁ → ∀ e₂ → CanAssign (cut {m = m} {n} {t} e₁ e₂) + cast : ∀ {i j t e} .(eq : i ≡ j) → CanAssign e → CanAssign (cast {t = t} eq e) + nil : CanAssign nil + cons : ∀ {m t ts e₁ e₂} → CanAssign e₁ → CanAssign e₂ → CanAssign (cons {m = m} {t} {ts} e₁ e₂) + head : ∀ {m t ts e} → CanAssign e → CanAssign (head {m = m} {t} {ts} e) + tail : ∀ {m t ts e} → CanAssign e → CanAssign (tail {m = m} {t} {ts} e) canAssign? (lit x) = no λ () canAssign? (state i) = yes (state i) canAssign? (var i) = yes (var i) - canAssign? (abort e) = yes abort + canAssign? (abort e) = yes (abort e) canAssign? (e ≟ e₁) = no λ () canAssign? (e <? e₁) = no λ () canAssign? (inv e) = no λ () @@ -173,8 +180,8 @@ module Code {o} (Σ : Vec Type o) where canAssign? (e or e₁) = no λ () canAssign? [ e ] = map′ [_] (λ { [ e ] → e }) (canAssign? e) canAssign? (unbox e) = map′ unbox (λ { (unbox e) → e }) (canAssign? e) - canAssign? (e ∶ e₁) = map′ (uncurry _∶_) (λ { (e ∶ e₁) → e , e₁ }) (canAssign? e ×-dec canAssign? e₁) - canAssign? (slice e e₁) = map′ (λ e → slice e e₁) (λ { (slice e e₁) → e }) (canAssign? e) + canAssign? (splice e e₁ e₂) = map′ (λ (e , e₁) → splice e e₁ e₂) (λ { (splice e e₁ _) → e , e₁ }) (canAssign? e ×-dec canAssign? e₁) + canAssign? (cut e e₁) = map′ (λ e → cut e e₁) (λ { (cut e e₁) → e }) (canAssign? e) canAssign? (cast eq e) = map′ (cast eq) (λ { (cast eq e) → e }) (canAssign? e) canAssign? (- e) = no λ () canAssign? (e + e₁) = no λ () @@ -185,38 +192,60 @@ module Code {o} (Σ : Vec Type o) where canAssign? (rnd e) = no λ () canAssign? (fin x e) = no λ () canAssign? (asInt e) = no λ () - canAssign? (tup es) = map′ tup (λ { (tup es) → es }) (canAssignAll? es) + canAssign? nil = yes nil + canAssign? (cons e e₁) = map′ (uncurry cons) (λ { (cons e e₁) → e , e₁ }) (canAssign? e ×-dec canAssign? e₁) + canAssign? (head e) = map′ head (λ { (head e) → e }) (canAssign? e) + canAssign? (tail e) = map′ tail (λ { (tail e) → e }) (canAssign? e) canAssign? (call x e) = no λ () canAssign? (if e then e₁ else e₂) = no λ () - canAssignAll? [] = yes [] - canAssignAll? (e ∷ es) = map′ (uncurry _∷_) (λ { (e ∷ es) → e , es }) (canAssign? e ×-dec canAssignAll? es) - - data AssignsState where - state : ∀ i {i<o} → AssignsState (state i {i<o}) - _∶ˡ_ : ∀ {m n t e₁ e₂ a₁} → AssignsState a₁ → ∀ a₂ → AssignsState (_∶_ {m = m} {n} {t} {e₁} {e₂} a₁ a₂) - _∶ʳ_ : ∀ {m n t e₁ e₂} a₁ {a₂} → AssignsState a₂ → AssignsState (_∶_ {m = m} {n} {t} {e₁} {e₂} a₁ a₂) - [_] : ∀ {t e a} → AssignsState a → AssignsState ([_] {t = t} {e} a) - unbox : ∀ {t e a} → AssignsState a → AssignsState (unbox {t = t} {e} a) - slice : ∀ {i j t e₁ a} → AssignsState a → ∀ e₂ → AssignsState (slice {i = i} {j} {t} {e₁} a e₂) - cast : ∀ {i j t e} .(eq : i ≡ j) {a} → AssignsState a → AssignsState (cast {t = t} {e} eq a) - tup : ∀ {m ts es as} → Any (AssignsState ∘ proj₂) (reduce (λ {x} a → x , a) as) → AssignsState (tup {m = m} {ts} {es} as) - - assignsState? (state i) = yes (state i) - assignsState? (var i) = no λ () - assignsState? abort = no λ () - assignsState? (a ∶ a₁) = map′ [ (_∶ˡ a₁) , (a ∶ʳ_) ]′ (λ { (s ∶ˡ _) → inj₁ s ; (_ ∶ʳ s) → inj₂ s }) (assignsState? a ⊎-dec assignsState? a₁) - assignsState? [ a ] = map′ [_] (λ { [ s ] → s }) (assignsState? a) - assignsState? (unbox a) = map′ unbox (λ { (unbox s) → s }) (assignsState? a) - assignsState? (slice a e₂) = map′ (λ s → slice s e₂ ) (λ { (slice s _) → s }) (assignsState? a) - assignsState? (cast eq a) = map′ (cast eq) (λ { (cast _ s) → s }) (assignsState? a) - assignsState? (tup as) = map′ tup (λ { (tup ss) → ss }) (assignsStateAny? as) - - assignsStateAny? {es = []} [] = no λ () - assignsStateAny? {es = e ∷ es} (a ∷ as) = map′ [ here , there ]′ (λ { (here s) → inj₁ s ; (there ss) → inj₂ ss }) (assignsState? a ⊎-dec assignsStateAny? as) + data ReferencesState where + state : ∀ i → ReferencesState (state i) + [_] : ∀ {t e} → ReferencesState e → ReferencesState ([_] {t = t} e) + unbox : ∀ {t e} → ReferencesState e → ReferencesState (unbox {t = t} e) + spliceˡ : ∀ {m n t e} → ReferencesState e → ∀ e₁ e₂ → ReferencesState (splice {m = m} {n} {t} e e₁ e₂) + spliceʳ : ∀ {m n t} e {e₁} → ReferencesState e₁ → ∀ e₂ → ReferencesState (splice {m = m} {n} {t} e e₁ e₂) + cut : ∀ {m n t e} → ReferencesState e → ∀ e₁ → ReferencesState (cut {m = m} {n} {t} e e₁) + cast : ∀ {i j t} .(eq : i ≡ j) {e} → ReferencesState e → ReferencesState (cast {t = t} eq e) + consˡ : ∀ {m t ts e} → ReferencesState e → ∀ e₁ → ReferencesState (cons {m = m} {t} {ts} e e₁) + consʳ : ∀ {m t ts} e {e₁} → ReferencesState e₁ → ReferencesState (cons {m = m} {t} {ts} e e₁) + head : ∀ {m t ts e} → ReferencesState e → ReferencesState (head {m = m} {t} {ts} e) + tail : ∀ {m t ts e} → ReferencesState e → ReferencesState (tail {m = m} {t} {ts} e) + + referencesState? (lit x) = no λ () + referencesState? (state i) = yes (state i) + referencesState? (var i) = no λ () + referencesState? (abort e) = no λ () + referencesState? (e ≟ e₁) = no λ () + referencesState? (e <? e₁) = no λ () + referencesState? (inv e) = no λ () + referencesState? (e && e₁) = no λ () + referencesState? (e || e₁) = no λ () + referencesState? (not e) = no λ () + referencesState? (e and e₁) = no λ () + referencesState? (e or e₁) = no λ () + referencesState? [ e ] = map′ [_] (λ { [ e ] → e }) (referencesState? e) + referencesState? (unbox e) = map′ unbox (λ { (unbox e) → e }) (referencesState? e) + referencesState? (splice e e₁ e₂) = map′ [ (λ e → spliceˡ e e₁ e₂) , (λ e₁ → spliceʳ e e₁ e₂) ]′ (λ { (spliceˡ e e₁ e₂) → inj₁ e ; (spliceʳ e e₁ e₂) → inj₂ e₁ }) (referencesState? e ⊎-dec referencesState? e₁) + referencesState? (cut e e₁) = map′ (λ e → cut e e₁) (λ { (cut e e₁) → e }) (referencesState? e) + referencesState? (cast eq e) = map′ (cast eq) (λ { (cast eq e) → e }) (referencesState? e) + referencesState? (- e) = no λ () + referencesState? (e + e₁) = no λ () + referencesState? (e * e₁) = no λ () + referencesState? (e ^ x) = no λ () + referencesState? (e >> x) = no λ () + referencesState? (rnd e) = no λ () + referencesState? (fin x e) = no λ () + referencesState? (asInt e) = no λ () + referencesState? nil = no λ () + referencesState? (cons e e₁) = map′ [ (λ e → consˡ e e₁) , (λ e₁ → consʳ e e₁) ]′ (λ { (consˡ e e₁) → inj₁ e ; (consʳ e e₁) → inj₂ e₁ }) (referencesState? e ⊎-dec referencesState? e₁) + referencesState? (head e) = map′ head (λ { (head e) → e }) (referencesState? e) + referencesState? (tail e) = map′ tail (λ { (tail e) → e }) (referencesState? e) + referencesState? (call f es) = no λ () + referencesState? (if e then e₁ else e₂) = no λ () infix 4 _≔_ - infixl 2 if_then_else_ + infixl 2 if_then_else_ if_then_ infixl 1 _∙_ _∙return_ infix 1 _∙end @@ -225,27 +254,30 @@ module Code {o} (Σ : Vec Type o) where skip : Statement Γ _≔_ : ∀ {t} → (ref : Expression Γ t) → {canAssign : True (canAssign? ref)} → Expression Γ t → Statement Γ declare : ∀ {t} → Expression Γ t → Statement (t ∷ Γ) → Statement Γ - invoke : ∀ {m Δ} → Procedure Δ → Expression Γ (tuple m Δ) → Statement Γ + invoke : ∀ {m Δ} → Procedure Δ → All (Expression Γ) {m} Δ → Statement Γ + if_then_ : Expression Γ bool → Statement Γ → Statement Γ if_then_else_ : Expression Γ bool → Statement Γ → Statement Γ → Statement Γ for : ∀ m → Statement (fin m ∷ Γ) → Statement Γ data ChangesState where - _∙ˡ_ : ∀ {s₁} → ChangesState s₁ → ∀ s₂ → ChangesState (s₁ ∙ s₂) - _∙ʳ_ : ∀ s₁ {s₂} → ChangesState s₂ → ChangesState (s₁ ∙ s₂) - _≔_ : ∀ {t ref} canAssign {assignsState : True (assignsState? (toWitness canAssign))} e₂ → ChangesState (_≔_ {t = t} ref {canAssign} e₂) + _∙ˡ_ : ∀ {s} → ChangesState s → ∀ s₁ → ChangesState (s ∙ s₁) + _∙ʳ_ : ∀ s {s₁} → ChangesState s₁ → ChangesState (s ∙ s₁) + _≔_ : ∀ {t} ref {canAssign : True (canAssign? ref)} {refsState : True (referencesState? ref)} e₂ → ChangesState (_≔_ {t = t} ref {canAssign} e₂) declare : ∀ {t} e {s} → ChangesState s → ChangesState (declare {t = t} e s) - invoke : ∀ {m Δ} p e → ChangesState (invoke {m = m} {Δ} p e) - if_then′_else_ : ∀ e {s₁} → ChangesState s₁ → ∀ s₂ → ChangesState (if e then s₁ else s₂) - if_then_else′_ : ∀ e s₁ {s₂} → ChangesState s₂ → ChangesState (if e then s₁ else s₂) + invoke : ∀ {m Δ} p es → ChangesState (invoke {m = m} {Δ} p es) + if_then_ : ∀ e {s} → ChangesState s → ChangesState (if e then s) + if_then′_else_ : ∀ e {s} → ChangesState s → ∀ s₁ → ChangesState (if e then s else s₁) + if_then_else′_ : ∀ e s {s₁} → ChangesState s₁ → ChangesState (if e then s else s₁) for : ∀ m {s} → ChangesState s → ChangesState (for m s) - changesState? (s₁ ∙ s₂) = map′ [ _∙ˡ s₂ , s₁ ∙ʳ_ ]′ (λ { (s ∙ˡ _) → inj₁ s ; (_ ∙ʳ s) → inj₂ s }) (changesState? s₁ ⊎-dec changesState? s₂) - changesState? skip = no λ () - changesState? (_≔_ ref {a} e) = map′ (λ s → _≔_ a {fromWitness s} e) (λ { (_≔_ _ {s} _) → toWitness s }) (assignsState? (toWitness a)) - changesState? (declare e s) = map′ (declare e) (λ { (declare e s) → s }) (changesState? s) - changesState? (invoke p e) = yes (invoke p e) - changesState? (if e then s₁ else s₂) = map′ [ if e then′_else s₂ , if e then s₁ else′_ ]′ (λ { (if _ then′ s else _) → inj₁ s ; (if _ then _ else′ s) → inj₂ s }) (changesState? s₁ ⊎-dec changesState? s₂) - changesState? (for m s) = map′ (for m) (λ { (for m s) → s }) (changesState? s) + changesState? (s ∙ s₁) = map′ [ _∙ˡ s₁ , s ∙ʳ_ ]′ (λ { (s ∙ˡ s₁) → inj₁ s ; (s ∙ʳ s₁) → inj₂ s₁ }) (changesState? s ⊎-dec changesState? s₁) + changesState? skip = no λ () + changesState? (_≔_ ref e) = map′ (λ refsState → _≔_ ref {refsState = fromWitness refsState} e) (λ { (_≔_ ref {refsState = refsState} e) → toWitness refsState }) (referencesState? ref) + changesState? (declare e s) = map′ (declare e) (λ { (declare e s) → s }) (changesState? s) + changesState? (invoke p e) = yes (invoke p e) + changesState? (if e then s) = map′ (if e then_) (λ { (if e then s) → s }) (changesState? s) + changesState? (if e then s else s₁) = map′ [ if e then′_else s₁ , if e then s else′_ ]′ (λ { (if e then′ s else s₁) → inj₁ s ; (if e then s else′ s₁) → inj₂ s₁ }) (changesState? s ⊎-dec changesState? s₁) + changesState? (for m s) = map′ (for m) (λ { (for m s) → s }) (changesState? s) data Function Γ ret where _∙return_ : (s : Statement Γ) → {False (changesState? s)} → Expression Γ ret → Function Γ ret @@ -253,36 +285,45 @@ module Code {o} (Σ : Vec Type o) where data Procedure Γ where _∙end : Statement Γ → Procedure Γ - declare : ∀ {t} → Expression Γ t → Procedure (t ∷ Γ) → Procedure Γ infixl 6 _<<_ - infixl 5 _-_ + infixl 5 _-_ _∶_ + + tup : ∀ {n Γ m ts} → All (Expression {n} Γ) ts → Expression Γ (tuple m ts) + tup [] = nil + tup (e ∷ es) = cons e (tup es) + + _∶_ : ∀ {n Γ i j t} → Expression {n} Γ (asType t j) → Expression Γ (asType t i) → Expression Γ (asType t (i ℕ.+ j)) + e₁ ∶ e₂ = splice e₁ e₂ (lit (Fin.fromℕ _ ′f)) + + slice : ∀ {n Γ i j t} → Expression {n} Γ (asType t (i ℕ.+ j)) → Expression Γ (fin (suc i)) → Expression Γ (asType t j) + slice e₁ e₂ = head (cut e₁ e₂) slice′ : ∀ {n Γ i j t} → Expression {n} Γ (asType t (i ℕ.+ j)) → Expression Γ (fin (suc j)) → Expression Γ (asType t i) slice′ {i = i} e₁ e₂ = slice (cast (+-comm i _) e₁) e₂ - _-_ : ∀ {n Γ t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression {n} Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ {isNumeric₁} {isNumeric₂}) + _-_ : ∀ {n Γ t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression {n} Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ isNumeric₁ isNumeric₂) _-_ {isNumeric₂ = isNumeric₂} x y = x + (-_ {isNumeric = isNumeric₂} y) _<<_ : ∀ {n Γ} → Expression {n} Γ int → ℕ → Expression Γ int x << n = rnd (x * lit (2 ′r) ^ n) get : ∀ {n Γ} → ℕ → Expression {n} Γ int → Expression Γ bit - get i x = if x - x >> suc i << suc i <? lit (2 ′i) ^ i then lit ((false ∷ []) ′x) else lit ((true ∷ []) ′x) + get i x = if x - x >> suc i << suc i <? lit (2 ′i) ^ i then lit (false ′x) else lit (true ′x) uint : ∀ {n Γ m} → Expression {n} Γ (bits m) → Expression Γ int uint {m = zero} x = lit (0 ′i) uint {m = suc m} x = - lit (2 ′i) * uint {m = m} (slice x (lit ((# 1) ′f))) + - ( if slice′ x (lit ((# 0) ′f)) ≟ lit ((true ∷ []) ′x) + lit (2 ′i) * uint {m = m} (slice x (lit (1F ′f))) + + ( if slice′ x (lit (0F ′f)) ≟ lit ((true ∷ []) ′xs) then lit (1 ′i) else lit (0 ′i)) sint : ∀ {n Γ m} → Expression {n} Γ (bits m) → Expression Γ int sint {m = zero} x = lit (0 ′i) - sint {m = suc zero} x = if x ≟ lit ((true ∷ []) ′x) then - lit (1 ′i) else lit (0 ′i) + sint {m = suc zero} x = if x ≟ lit ((true ∷ []) ′xs) then - lit (1 ′i) else lit (0 ′i) sint {m = suc (suc m)} x = - lit (2 ′i) * sint (slice {i = 1} x (lit ((# 1) ′f))) + - ( if slice′ x (lit ((# 0) ′f)) ≟ lit ((true ∷ []) ′x) + lit (2 ′i) * sint (slice {i = 1} x (lit (1F ′f))) + + ( if slice′ x (lit (0F ′f)) ≟ lit ((true ∷ []) ′xs) then lit (1 ′i) else lit (0 ′i)) diff --git a/src/Helium/Data/Pseudocode/Types.agda b/src/Helium/Data/Pseudocode/Types.agda index 971ca12..dbd3c6b 100644 --- a/src/Helium/Data/Pseudocode/Types.agda +++ b/src/Helium/Data/Pseudocode/Types.agda @@ -146,3 +146,5 @@ record Pseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃ : ; _/1 = _/1 ; ⌊_⌋ = ⌊_⌋ } + + open RawPseudocode rawPseudocode using (module ℤ′; module ℝ′) public diff --git a/src/Helium/Instructions/Base.agda b/src/Helium/Instructions/Base.agda index 62a6968..d157d5a 100644 --- a/src/Helium/Instructions/Base.agda +++ b/src/Helium/Instructions/Base.agda @@ -10,6 +10,7 @@ module Helium.Instructions.Base where open import Data.Bool as Bool using (true; false) open import Data.Fin as Fin using (Fin; Fin′; zero; suc; toℕ) +open import Data.Fin.Patterns open import Data.Nat as ℕ using (ℕ; zero; suc) import Data.Nat.Properties as ℕₚ open import Data.Sum using ([_,_]′; inj₂) @@ -49,25 +50,25 @@ open Core.Code State public -- Direct from State S : ∀ {n Γ} → Expression {n} Γ (array (bits 32) 32) -S = state 0 +S = state 0F R : ∀ {n Γ} → Expression {n} Γ (array (bits 32) 16) -R = state 1 +R = state 1F VPR-P0 : ∀ {n Γ} → Expression {n} Γ (bits 16) -VPR-P0 = state 2 +VPR-P0 = state 2F VPR-mask : ∀ {n Γ} → Expression {n} Γ (bits 8) -VPR-mask = state 3 +VPR-mask = state 3F FPSCR-QC : ∀ {n Γ} → Expression {n} Γ bit -FPSCR-QC = state 4 +FPSCR-QC = state 4F AdvanceVPTState : ∀ {n Γ} → Expression {n} Γ bool -AdvanceVPTState = state 5 +AdvanceVPTState = state 5F BeatId : ∀ {n Γ} → Expression {n} Γ beat -BeatId = state 6 +BeatId = state 6F -- Indirect @@ -84,8 +85,7 @@ join {k = k} {suc m} x = cast eq (join (slice x (lit (Fin.fromℕ 1 ′f))) ∶ eq = P.trans (P.cong (k ℕ.+_) (ℕₚ.*-comm k (suc m))) (ℕₚ.*-comm (suc (suc m)) k) index : ∀ {n Γ t m} → Expression {n} Γ (asType t (suc m)) → Expression Γ (fin (suc m)) → Expression Γ (elemType t) -index {t = bits} {m} x i = slice (cast (ℕₚ.+-comm 1 m) x) i -index {t = array _} {m} x i = unbox (slice (cast (ℕₚ.+-comm 1 m) x) i) +index {m = m} x i = unbox (slice (cast (ℕₚ.+-comm 1 m) x) i) Q : ∀ {n Γ} → Expression {n} Γ (array (array (bits 32) 4) 8) Q = group 7 S @@ -98,39 +98,39 @@ elem {k = suc k} (suc m) x i = index (group k (cast (ℕₚ.*-comm (suc k) (suc --- Other utiliies hasBit : ∀ {n Γ m} → Expression {n} Γ (bits (suc m)) → Expression Γ (fin (suc m)) → Expression Γ bool -hasBit {n} x i = index x i ≟ lit ((true ∷ []) ′x) +hasBit {n} x i = index x i ≟ lit (true ′x) sliceⁱ : ∀ {n Γ m} → ℕ → Expression {n} Γ int → Expression Γ (bits m) -sliceⁱ {m = zero} n i = lit ([] ′x) -sliceⁱ {m = suc m} n i = sliceⁱ (suc n) i ∶ get n i +sliceⁱ {m = zero} n i = lit ([] ′xs) +sliceⁱ {m = suc m} n i = sliceⁱ (suc n) i ∶ [ get n i ] --- Functions Int : ∀ {n} → Function (bits n ∷ bool ∷ []) int -Int = skip ∙return (if var 1 then uint (var 0) else sint (var 0)) +Int = skip ∙return (if var 1F then uint (var 0F) else sint (var 0F)) -- arguments swapped, pred n SignedSatQ : ∀ n → Function (int ∷ []) (tuple 2 (bits (suc n) ∷ bool ∷ [])) SignedSatQ n = declare (lit (true ′b)) ( - if max <? var 1 + if max <? var 1F then - var 1 ≔ max - else if var 1 <? min + var 1F ≔ max + else if var 1F <? min then - var 1 ≔ min + var 1F ≔ min else - var 0 ≔ lit (false ′b) - ∙return tup (sliceⁱ 0 (var 1) ∷ var 0 ∷ [])) + var 0F ≔ lit (false ′b) + ∙return tup (sliceⁱ 0 (var 1F) ∷ var 0F ∷ [])) where max = lit (2 ′i) ^ n + - lit (1 ′i) min = - (lit (2 ′i) ^ n) -- actual shift if 'shift + 1' LSL-C : ∀ {n} (shift : ℕ) → Function (bits n ∷ []) (tuple 2 (bits n ∷ bit ∷ [])) -LSL-C {n} shift = declare (var 0 ∶ lit ((Vec.replicate {n = (suc shift)} false) ′x)) +LSL-C {n} shift = declare (var 0F ∶ lit ((Vec.replicate {n = (suc shift)} false) ′xs)) (skip ∙return tup - ( slice (var 0) (lit (zero ′f)) - ∷ slice (cast eq (var 0)) (lit (Fin.inject+ shift (Fin.fromℕ n) ′f)) + ( slice (var 0F) (lit (zero ′f)) + ∷ unbox (slice (cast eq (var 0F)) (lit (Fin.inject+ shift (Fin.fromℕ n) ′f))) ∷ [])) where eq = P.trans (ℕₚ.+-comm 1 (shift ℕ.+ n)) (P.cong (ℕ._+ 1) (ℕₚ.+-comm shift n)) @@ -146,46 +146,41 @@ private copyMasked : Procedure (fin 8 ∷ bits 32 ∷ beat ∷ elmtMask ∷ []) copyMasked = for 4 -- 0:e 1:dest 2:result 3:beat 4:elmtMask - ( if hasBit (var 4) (var 0) + ( if hasBit (var 4F) (var 0F) then - elem 8 (index (index Q (var 1)) (var 3)) (var 0) ≔ elem 8 (var 2) (var 0) - else skip + elem 8 (index (index Q (var 1F)) (var 3F)) (var 0F) ≔ elem 8 (var 2F) (var 0F) ) ∙end VPTAdvance : Procedure (beat ∷ []) -VPTAdvance = declare (fin div2 (tup (var 0 ∷ []))) ( - declare (elem 4 VPR-mask (var 0)) ( +VPTAdvance = declare (fin div2 (tup (var 0F ∷ []))) ( + declare (elem 4 VPR-mask (var 0F)) ( -- 0:vptState 1:maskId 2:beat - if var 0 ≟ lit ((true ∷ false ∷ false ∷ false ∷ []) ′x) + if var 0F ≟ lit ((true ∷ false ∷ false ∷ false ∷ []) ′xs) then - var 0 ≔ lit (Vec.replicate false ′x) - else if inv (var 0 ≟ lit (Vec.replicate false ′x)) + var 0F ≔ lit (Vec.replicate false ′xs) + else if inv (var 0F ≟ lit (Vec.replicate false ′xs)) then ( - declare (lit ((false ∷ []) ′x)) ( + declare (lit (false ′x)) ( -- 0:inv 1:vptState 2:maskId 3:beat - tup (var 1 ∷ var 0 ∷ []) ≔ call (LSL-C 0) (tup (var 1 ∷ [])) ∙ - if var 0 ≟ lit ((true ∷ []) ′x) + tup (var 1F ∷ var 0F ∷ []) ≔ call (LSL-C 0) (var 1F ∷ []) ∙ + if var 0F ≟ lit (true ′x) then - elem 4 VPR-P0 (var 3) ≔ not (elem 4 VPR-P0 (var 3)) - else skip)) - else skip ∙ - if get 0 (asInt (var 2)) ≟ lit ((true ∷ []) ′x) + elem 4 VPR-P0 (var 3F) ≔ not (elem 4 VPR-P0 (var 3F)))) ∙ + if get 0 (asInt (var 2F)) ≟ lit (true ′x) then - elem 4 VPR-mask (var 1) ≔ var 0 - else skip - ∙end)) + elem 4 VPR-mask (var 1F) ≔ var 0F)) + ∙end VPTActive : Function (beat ∷ []) bool -VPTActive = skip ∙return inv (elem 4 VPR-mask (fin div2 (tup (var 0 ∷ []))) ≟ lit (Vec.replicate false ′x)) +VPTActive = skip ∙return inv (elem 4 VPR-mask (fin div2 (tup (var 0F ∷ []))) ≟ lit (Vec.replicate false ′xs)) GetCurInstrBeat : Function [] (tuple 2 (beat ∷ elmtMask ∷ [])) -GetCurInstrBeat = declare (lit (Vec.replicate true ′x)) ( +GetCurInstrBeat = declare (lit (Vec.replicate true ′xs)) ( -- 0:elmtMask 1:beat - if call VPTActive (tup (BeatId ∷ [])) + if call VPTActive (BeatId ∷ []) then - var 0 ≔ var 0 and elem 4 VPR-P0 BeatId - else skip - ∙return tup (BeatId ∷ var 0 ∷ [])) + var 0F ≔ var 0F and elem 4 VPR-P0 BeatId + ∙return tup (BeatId ∷ var 0F ∷ [])) -- Assumes: -- MAX_OVERLAPPING_INSTRS = 1 @@ -197,13 +192,12 @@ ExecBeats : Procedure [] → Procedure [] ExecBeats DecodeExec = for 4 ( -- 0:beatId - BeatId ≔ var 0 ∙ + BeatId ≔ var 0F ∙ AdvanceVPTState ≔ lit (true ′b) ∙ - invoke DecodeExec (tup []) ∙ + invoke DecodeExec [] ∙ if AdvanceVPTState then - invoke VPTAdvance (tup (var 0 ∷ [])) - else skip) + invoke VPTAdvance (var 0F ∷ [])) ∙end from32 : ∀ size {n Γ} → Expression {n} Γ (bits 32) → Expression Γ (array (bits (toℕ (Instr.Size.esize size))) (toℕ (Instr.Size.elements size))) @@ -222,71 +216,70 @@ module _ (d : Instr.VecOp₂) where -- 0:op₂ 1:e 2:op₁ 3:result 4:elmtMask 5:curBeat vec-op₂′ : Statement (bits (toℕ esize) ∷ fin (toℕ elements) ∷ array (bits (toℕ esize)) (toℕ elements) ∷ array (bits (toℕ esize)) (toℕ elements) ∷ elmtMask ∷ beat ∷ []) → Procedure [] vec-op₂′ op = declare (lit (zero ′f)) ( - declare (lit (Vec.replicate false ′x)) ( + declare (lit (Vec.replicate false ′xs)) ( -- 0:elmtMask 1:curBeat - tup (var 1 ∷ var 0 ∷ []) ≔ call GetCurInstrBeat (tup []) ∙ - declare (lit ((Vec.replicate false ′x) ′a)) ( - declare (from32 size (index (index Q (lit (src₁ ′f))) (var 2))) ( + tup (var 1F ∷ var 0F ∷ []) ≔ call GetCurInstrBeat [] ∙ + declare (lit ((Vec.replicate false ′xs) ′a)) ( + declare (from32 size (index (index Q (lit (src₁ ′f))) (var 2F))) ( -- 0:op₁ 1:result 2:elmtMask 3:curBeat for (toℕ elements) ( -- 0:e 1:op₁ 2:result 3:elmtMask 4:curBeat declare op₂ op ) ∙ -- 0:op₁ 1:result 2:elmtMask 3:curBeat - invoke copyMasked (tup (lit (dest ′f) ∷ to32 size (var 1) ∷ var 3 ∷ var 2 ∷ [])))) - ∙end)) + invoke copyMasked (lit (dest ′f) ∷ to32 size (var 1F) ∷ var 3F ∷ var 2F ∷ []))))) + ∙end where -- 0:e 1:op₁ 2:result 3:elmtMask 4:curBeat op₂ = [ (λ src₂ → index (from32 size (index R (lit (src₂ ′f)))) (lit (zero ′f))) - , (λ src₂ → index (from32 size (index (index Q (lit (src₂ ′f))) (var 4))) (var 0)) + , (λ src₂ → index (from32 size (index (index Q (lit (src₂ ′f))) (var 4F))) (var 0F)) ]′ src₂ vec-op₂ : Function (bits (toℕ esize) ∷ bits (toℕ esize) ∷ []) (bits (toℕ esize)) → Procedure [] - vec-op₂ op = vec-op₂′ (index (var 3) (var 1) ≔ call op (tup (index (var 2) (var 1) ∷ var 0 ∷ []))) + vec-op₂ op = vec-op₂′ (index (var 3F) (var 1F) ≔ call op (index (var 2F) (var 1F) ∷ var 0F ∷ [])) vadd : Instr.VAdd → Procedure [] -vadd d = vec-op₂ d (skip ∙return sliceⁱ 0 (uint (var 0) + uint (var 1))) +vadd d = vec-op₂ d (skip ∙return sliceⁱ 0 (uint (var 0F) + uint (var 1F))) vsub : Instr.VSub → Procedure [] -vsub d = vec-op₂ d (skip ∙return sliceⁱ 0 (uint (var 0) - uint (var 1))) +vsub d = vec-op₂ d (skip ∙return sliceⁱ 0 (uint (var 0F) - uint (var 1F))) vhsub : Instr.VHSub → Procedure [] -vhsub d = vec-op₂ op₂ (skip ∙return sliceⁱ 1 (toInt (var 0) - toInt (var 1))) - where open Instr.VHSub d; toInt = λ i → call Int (tup (i ∷ lit (unsigned ′b) ∷ [])) +vhsub d = vec-op₂ op₂ (skip ∙return sliceⁱ 1 (toInt (var 0F) - toInt (var 1F))) + where open Instr.VHSub d; toInt = λ i → call Int (i ∷ lit (unsigned ′b) ∷ []) vmul : Instr.VMul → Procedure [] -vmul d = vec-op₂ d (skip ∙return sliceⁱ 0 (sint (var 0) * sint (var 1))) +vmul d = vec-op₂ d (skip ∙return sliceⁱ 0 (sint (var 0F) * sint (var 1F))) vmulh : Instr.VMulH → Procedure [] -vmulh d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0) * toInt (var 1))) +vmulh d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0F) * toInt (var 1F))) where - open Instr.VMulH d; toInt = λ i → call Int (tup (i ∷ lit (unsigned ′b) ∷ [])) + open Instr.VMulH d; toInt = λ i → call Int (i ∷ lit (unsigned ′b) ∷ []) vrmulh : Instr.VRMulH → Procedure [] -vrmulh d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0) * toInt (var 1) + lit (1 ′i) << toℕ esize-1)) +vrmulh d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0F) * toInt (var 1F) + lit (1 ′i) << toℕ esize-1)) where - open Instr.VRMulH d; toInt = λ i → call Int (tup (i ∷ lit (unsigned ′b) ∷ [])) + open Instr.VRMulH d; toInt = λ i → call Int (i ∷ lit (unsigned ′b) ∷ []) vmla : Instr.VMlA → Procedure [] -vmla d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0) * element₂ + toInt (var 1))) +vmla d = vec-op₂ op₂ (skip ∙return sliceⁱ (toℕ esize) (toInt (var 0F) * element₂ + toInt (var 1F))) where open Instr.VMlA d op₂ = record { size = size ; dest = acc ; src₁ = src₁ ; src₂ = inj₂ acc } - toInt = λ i → call Int (tup (i ∷ lit (unsigned ′b) ∷ [])) + toInt = λ i → call Int (i ∷ lit (unsigned ′b) ∷ []) element₂ = toInt (index (from32 size (index R (lit (src₂ ′f)))) (lit (zero ′f))) private vqr?dmulh : Instr.VQDMulH → Function (int ∷ int ∷ []) int → Procedure [] vqr?dmulh d f = vec-op₂′ d ( -- 0:op₂ 1:e 2:op₁ 3:result 4:elmtMask 5:curBeat - declare (call f (tup (sint (index (var 2) (var 1)) ∷ sint (var 0) ∷ []))) ( + declare (call f (sint (index (var 2F) (var 1F)) ∷ sint (var 0F) ∷ [])) ( declare (lit (false ′b)) ( -- 0:sat 1:value 2:op₂ 3:e 4:op₁ 5:result 6:elmtMask 7:curBeat - tup (index (var 5) (var 3) ∷ var 0 ∷ []) ≔ call (SignedSatQ (toℕ esize-1)) (tup (var 1 ∷ [])) ∙ - if var 0 && hasBit (var 6) (fin e*esize>>3 (tup ((var 3) ∷ []))) + tup (index (var 5F) (var 3F) ∷ var 0F ∷ []) ≔ call (SignedSatQ (toℕ esize-1)) (var 1F ∷ []) ∙ + if var 0F && hasBit (var 6F) (fin e*esize>>3 (tup ((var 3F) ∷ []))) then - FPSCR-QC ≔ lit ((true ∷ []) ′x) - else skip))) + FPSCR-QC ≔ lit (true ′x)))) where open Instr.VecOp₂ d @@ -299,9 +292,9 @@ private helper Instr.32bit i = Fin.combine i zero vqdmulh : Instr.VQDMulH → Procedure [] -vqdmulh d = vqr?dmulh d (skip ∙return lit (2 ′i) * var 0 * var 1 >> toℕ esize) +vqdmulh d = vqr?dmulh d (skip ∙return lit (2 ′i) * var 0F * var 1F >> toℕ esize) where open Instr.VecOp₂ d using (esize) vqrdmulh : Instr.VQRDMulH → Procedure [] -vqrdmulh d = vqr?dmulh d (skip ∙return lit (2 ′i) * var 0 * var 1 + lit (1 ′i) << toℕ esize-1 >> toℕ esize) +vqrdmulh d = vqr?dmulh d (skip ∙return lit (2 ′i) * var 0F * var 1F + lit (1 ′i) << toℕ esize-1 >> toℕ esize) where open Instr.VecOp₂ d using (esize; esize-1) diff --git a/src/Helium/Instructions/Instances/Barrett.agda b/src/Helium/Instructions/Instances/Barrett.agda index 5ec9ba4..606a9e9 100644 --- a/src/Helium/Instructions/Instances/Barrett.agda +++ b/src/Helium/Instructions/Instances/Barrett.agda @@ -25,9 +25,9 @@ open import Helium.Instructions.Core barret : (m -n : Expression [] (bits 32)) (t z : VecReg) (im : GenReg) → Procedure [] barret m -n t z im = index R (lit (im ′f)) ≔ m ∙ - invoke vqrdmulh-s32,t,z,m (tup []) ∙ + invoke vqrdmulh-s32,t,z,m [] ∙ index R (lit (im ′f)) ≔ -n ∙ - invoke vmla-s32,z,t,-n (tup []) ∙end + invoke vmla-s32,z,t,-n [] ∙end where vqrdmulh-s32,t,z,m = ExecBeats (vqrdmulh (record diff --git a/src/Helium/Semantics/Denotational/Core.agda b/src/Helium/Semantics/Denotational/Core.agda index b425252..0bd1794 100644 --- a/src/Helium/Semantics/Denotational/Core.agda +++ b/src/Helium/Semantics/Denotational/Core.agda @@ -17,7 +17,7 @@ private open module C = RawPseudocode rawPseudocode open import Data.Bool as Bool using (Bool; true; false) -open import Data.Fin as Fin using (Fin; zero; suc; #_) +open import Data.Fin as Fin using (Fin; zero; suc) import Data.Fin.Properties as Finₚ open import Data.Nat as ℕ using (ℕ; zero; suc) import Data.Nat.Properties as ℕₚ @@ -31,7 +31,7 @@ open import Function using (case_of_; _∘′_; id) open import Helium.Data.Pseudocode.Core import Induction as I import Induction.WellFounded as Wf -open import Level hiding (zero; suc) +open import Level using (Level; _⊔_; 0ℓ) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; module ≡-Reasoning) open import Relation.Nullary using (does) open import Relation.Nullary.Decidable.Core using (True; False; toWitness; fromWitness) @@ -41,6 +41,7 @@ open import Relation.Nullary.Decidable.Core using (True; False; toWitness; fromW ⟦ int ⟧ₗ = i₁ ⟦ fin n ⟧ₗ = 0ℓ ⟦ real ⟧ₗ = r₁ +⟦ bit ⟧ₗ = b₁ ⟦ bits n ⟧ₗ = b₁ ⟦ tuple n ts ⟧ₗ = helper ts where @@ -56,6 +57,7 @@ open import Relation.Nullary.Decidable.Core using (True; False; toWitness; fromW ⟦ int ⟧ₜ = ℤ ⟦ fin n ⟧ₜ = Fin n ⟦ real ⟧ₜ = ℝ +⟦ bit ⟧ₜ = Bit ⟦ bits n ⟧ₜ = Bits n ⟦ tuple n ts ⟧ₜ = ⟦ ts ⟧ₜ′ ⟦ array t n ⟧ₜ = Vec ⟦ t ⟧ₜ n @@ -66,13 +68,13 @@ open import Relation.Nullary.Decidable.Core using (True; False; toWitness; fromW -- The case for bitvectors looks odd so that the right-most bit is bit 0. 𝒦 : ∀ {t} → Literal t → ⟦ t ⟧ₜ -𝒦 (x ′b) = x -𝒦 (x ′i) = x ℤ′.×′ 1ℤ -𝒦 (x ′f) = x -𝒦 (x ′r) = x ℝ′.×′ 1ℝ -𝒦 (xs ′x) = Vec.foldl Bits (λ bs b → (Bool.if b then 1𝔹 else 0𝔹) VecF.∷ bs) VecF.[] xs -𝒦 (x ′a) = Vec.replicate (𝒦 x) - +𝒦 (x ′b) = x +𝒦 (x ′i) = x ℤ′.×′ 1ℤ +𝒦 (x ′f) = x +𝒦 (x ′r) = x ℝ′.×′ 1ℝ +𝒦 (x ′x) = Bool.if x then 1𝔹 else 0𝔹 +𝒦 (xs ′xs) = Vec.foldl Bits (λ bs b → (Bool.if b then 1𝔹 else 0𝔹) VecF.∷ bs) VecF.[] xs +𝒦 (x ′a) = Vec.replicate (𝒦 x) fetch : ∀ {n} ts → ⟦ tuple n ts ⟧ₜ → ∀ i → ⟦ Vec.lookup ts i ⟧ₜ fetch (_ ∷ []) x zero = x @@ -96,10 +98,11 @@ tupTail [] x = _ tupTail (_ ∷ _) (x , xs) = xs equal : ∀ {t} → HasEquality t → ⟦ t ⟧ₜ → ⟦ t ⟧ₜ → Bool -equal bool x y = does (x Bool.≟ y) -equal int x y = does (x ≟ᶻ y) -equal fin x y = does (x Fin.≟ y) -equal real x y = does (x ≟ʳ y) +equal bool x y = does (x Bool.≟ y) +equal int x y = does (x ≟ᶻ y) +equal fin x y = does (x Fin.≟ y) +equal real x y = does (x ≟ʳ y) +equal bit x y = does (x ≟ᵇ₁ y) equal bits x y = does (x ≟ᵇ y) comp : ∀ {t} → IsNumeric t → ⟦ t ⟧ₜ → ⟦ t ⟧ₜ → Bool @@ -108,8 +111,8 @@ comp real x y = does (x <ʳ? y) -- 0 of y is 0 of result join : ∀ t {m n} → ⟦ asType t m ⟧ₜ → ⟦ asType t n ⟧ₜ → ⟦ asType t (n ℕ.+ m) ⟧ₜ -join bits {m} x y = y VecF.++ x -join (array _) {m} x y = y Vec.++ x +join bits x y = y VecF.++ x +join (array _) x y = y Vec.++ x -- take from 0 take : ∀ t i {j} → ⟦ asType t (i ℕ.+ j) ⟧ₜ → ⟦ asType t i ⟧ₜ @@ -131,38 +134,59 @@ module _ where m≤n⇒m+k≡n ℕ.z≤n = _ , ≡.refl m≤n⇒m+k≡n (ℕ.s≤s m≤n) = P.dmap id (≡.cong suc) (m≤n⇒m+k≡n m≤n) - slicedSize : ∀ i j (off : Fin (suc i)) → P.∃ λ k → i ℕ.+ j ≡ Fin.toℕ off ℕ.+ (j ℕ.+ k) - slicedSize i j off = k , (begin - i ℕ.+ j ≡˘⟨ ≡.cong (ℕ._+ j) (P.proj₂ off+k≤i) ⟩ - (Fin.toℕ off ℕ.+ k) ℕ.+ j ≡⟨ ℕₚ.+-assoc (Fin.toℕ off) k j ⟩ - Fin.toℕ off ℕ.+ (k ℕ.+ j) ≡⟨ ≡.cong (Fin.toℕ off ℕ.+_) (ℕₚ.+-comm k j) ⟩ - Fin.toℕ off ℕ.+ (j ℕ.+ k) ∎) + slicedSize : ∀ n m (i : Fin (suc n)) → P.∃ λ k → n ℕ.+ m ≡ Fin.toℕ i ℕ.+ (m ℕ.+ k) × Fin.toℕ i ℕ.+ k ≡ n + slicedSize n m i = k , (begin + n ℕ.+ m ≡˘⟨ ≡.cong (ℕ._+ m) (P.proj₂ i+k≡n) ⟩ + (Fin.toℕ i ℕ.+ k) ℕ.+ m ≡⟨ ℕₚ.+-assoc (Fin.toℕ i) k m ⟩ + Fin.toℕ i ℕ.+ (k ℕ.+ m) ≡⟨ ≡.cong (Fin.toℕ i ℕ.+_) (ℕₚ.+-comm k m) ⟩ + Fin.toℕ i ℕ.+ (m ℕ.+ k) ∎) , + P.proj₂ i+k≡n where open ≡-Reasoning - off+k≤i = m≤n⇒m+k≡n (ℕₚ.≤-pred (Finₚ.toℕ<n off)) - k = P.proj₁ off+k≤i - - sliced : ∀ t {i j} → ⟦ asType t (i ℕ.+ j) ⟧ₜ → ⟦ fin (suc i) ⟧ₜ → ⟦ asType t j ⟧ₜ - sliced t {i} {j} x off = take t j (drop t (Fin.toℕ off) (casted t (P.proj₂ (slicedSize i j off)) x)) + i+k≡n = m≤n⇒m+k≡n (ℕₚ.≤-pred (Finₚ.toℕ<n i)) + k = P.proj₁ i+k≡n -updateSliced : ∀ {a} {A : Set a} t {i j} → ⟦ asType t (i ℕ.+ j) ⟧ₜ → ⟦ fin (suc i) ⟧ₜ → ⟦ asType t j ⟧ₜ → (⟦ asType t (i ℕ.+ j) ⟧ₜ → A) → A -updateSliced t {i} {j} orig off v f = f (casted t (≡.sym eq) (join t (join t untaken v) dropped)) - where - eq = P.proj₂ (slicedSize i j off) - dropped = take t (Fin.toℕ off) (casted t eq orig) - untaken = drop t j (drop t (Fin.toℕ off) (casted t eq orig)) + -- 0 of x is i of result + spliced : ∀ t {m n} → ⟦ asType t m ⟧ₜ → ⟦ asType t n ⟧ₜ → ⟦ fin (suc n) ⟧ₜ → ⟦ asType t (n ℕ.+ m) ⟧ₜ + spliced t {m} x y i = casted t eq (join t (join t high x) low) + where + reasoning = slicedSize _ m i + k = P.proj₁ reasoning + n≡i+k = ≡.sym (P.proj₂ (P.proj₂ reasoning)) + low = take t (Fin.toℕ i) (casted t n≡i+k y) + high = drop t (Fin.toℕ i) (casted t n≡i+k y) + eq = ≡.sym (P.proj₁ (P.proj₂ reasoning)) + + sliced : ∀ t {m n} → ⟦ asType t (n ℕ.+ m) ⟧ₜ → ⟦ fin (suc n) ⟧ₜ → ⟦ asType t m ∷ asType t n ∷ [] ⟧ₜ′ + sliced t {m} x i = middle , casted t i+k≡n (join t high low) + where + reasoning = slicedSize _ m i + k = P.proj₁ reasoning + i+k≡n = P.proj₂ (P.proj₂ reasoning) + eq = P.proj₁ (P.proj₂ reasoning) + low = take t (Fin.toℕ i) (casted t eq x) + middle = take t m (drop t (Fin.toℕ i) (casted t eq x)) + high = drop t m (drop t (Fin.toℕ i) (casted t eq x)) + +box : ∀ t → ⟦ elemType t ⟧ₜ → ⟦ asType t 1 ⟧ₜ +box bits v = v VecF.∷ VecF.[] +box (array t) v = v ∷ [] + +unboxed : ∀ t → ⟦ asType t 1 ⟧ₜ → ⟦ elemType t ⟧ₜ +unboxed bits v = v (Fin.zero) +unboxed (array t) (v ∷ []) = v neg : ∀ {t} → IsNumeric t → ⟦ t ⟧ₜ → ⟦ t ⟧ₜ neg int x = ℤ.- x neg real x = ℝ.- x -add : ∀ {t₁ t₂} (isNum₁ : True (isNumeric? t₁)) (isNum₂ : True (isNumeric? t₂)) → ⟦ t₁ ⟧ₜ → ⟦ t₂ ⟧ₜ → ⟦ combineNumeric t₁ t₂ {isNum₁} {isNum₂} ⟧ₜ +add : ∀ {t₁ t₂} (isNum₁ : True (isNumeric? t₁)) (isNum₂ : True (isNumeric? t₂)) → ⟦ t₁ ⟧ₜ → ⟦ t₂ ⟧ₜ → ⟦ combineNumeric t₁ t₂ isNum₁ isNum₂ ⟧ₜ add {t₁ = int} {t₂ = int} _ _ x y = x ℤ.+ y add {t₁ = int} {t₂ = real} _ _ x y = x /1 ℝ.+ y add {t₁ = real} {t₂ = int} _ _ x y = x ℝ.+ y /1 add {t₁ = real} {t₂ = real} _ _ x y = x ℝ.+ y -mul : ∀ {t₁ t₂} (isNum₁ : True (isNumeric? t₁)) (isNum₂ : True (isNumeric? t₂)) → ⟦ t₁ ⟧ₜ → ⟦ t₂ ⟧ₜ → ⟦ combineNumeric t₁ t₂ {isNum₁} {isNum₂} ⟧ₜ +mul : ∀ {t₁ t₂} (isNum₁ : True (isNumeric? t₁)) (isNum₂ : True (isNumeric? t₂)) → ⟦ t₁ ⟧ₜ → ⟦ t₂ ⟧ₜ → ⟦ combineNumeric t₁ t₂ isNum₁ isNum₂ ⟧ₜ mul {t₁ = int} {t₂ = int} _ _ x y = x ℤ.* y mul {t₁ = int} {t₂ = real} _ _ x y = x /1 ℝ.* y mul {t₁ = real} {t₂ = int} _ _ x y = x ℝ.* y /1 @@ -186,11 +210,12 @@ module Expression ⟦_⟧ˢ : ∀ {n} {Γ : Vec Type n} → Statement Γ → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ ⟦_⟧ᶠ : ∀ {n} {Γ : Vec Type n} {ret} → Function Γ ret → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ ret ⟧ₜ ⟦_⟧ᵖ : ∀ {n} {Γ : Vec Type n} → Procedure Γ → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ + ⟦_⟧ᵉ′ : ∀ {n} {Γ : Vec Type n} {m ts} → All (Expression Γ) ts → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ tuple m ts ⟧ₜ update : ∀ {n Γ t e} → CanAssign {n} {Γ} {t} e → ⟦ t ⟧ₜ → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ ⟦ lit x ⟧ᵉ σ γ = 𝒦 x - ⟦ state i ⟧ᵉ σ γ = fetch Σ σ (# i) - ⟦_⟧ᵉ {Γ = Γ} (var i) σ γ = fetch Γ γ (# i) + ⟦ state i ⟧ᵉ σ γ = fetch Σ σ i + ⟦_⟧ᵉ {Γ = Γ} (var i) σ γ = fetch Γ γ i ⟦ abort e ⟧ᵉ σ γ = case ⟦ e ⟧ᵉ σ γ of λ () ⟦ _≟_ {hasEquality = hasEq} e e₁ ⟧ᵉ σ γ = equal (toWitness hasEq) (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) ⟦ _<?_ {isNumeric = isNum} e e₁ ⟧ᵉ σ γ = comp (toWitness isNum) (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) @@ -200,10 +225,10 @@ module Expression ⟦ not e ⟧ᵉ σ γ = Bits.¬_ (⟦ e ⟧ᵉ σ γ) ⟦ e and e₁ ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ Bits.∧ ⟦ e₁ ⟧ᵉ σ γ ⟦ e or e₁ ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ Bits.∨ ⟦ e₁ ⟧ᵉ σ γ - ⟦ [ e ] ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ Vec.∷ [] - ⟦ unbox e ⟧ᵉ σ γ = Vec.head (⟦ e ⟧ᵉ σ γ) - ⟦ _∶_ {t = t} e e₁ ⟧ᵉ σ γ = join t (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) - ⟦ slice {t = t} e e₁ ⟧ᵉ σ γ = sliced t (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) + ⟦ [_] {t = t} e ⟧ᵉ σ γ = box t (⟦ e ⟧ᵉ σ γ) + ⟦ unbox {t = t} e ⟧ᵉ σ γ = unboxed t (⟦ e ⟧ᵉ σ γ) + ⟦ splice {t = t} e e₁ e₂ ⟧ᵉ σ γ = spliced t (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) (⟦ e₂ ⟧ᵉ σ γ) + ⟦ cut {t = t} e e₁ ⟧ᵉ σ γ = sliced t (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) ⟦ cast {t = t} eq e ⟧ᵉ σ γ = casted t eq (⟦ e ⟧ᵉ σ γ) ⟦ -_ {isNumeric = isNum} e ⟧ᵉ σ γ = neg (toWitness isNum) (⟦ e ⟧ᵉ σ γ) ⟦ _+_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁ ⟧ᵉ σ γ = add isNum₁ isNum₂ (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) @@ -219,17 +244,23 @@ module Expression apply {suc k} {_ ∷ ms} f xs = apply (λ x → f (tupHead (Vec.map fin ms) xs ∷ x)) (tupTail (Vec.map fin ms) xs) ⟦ asInt e ⟧ᵉ σ γ = Fin.toℕ (⟦ e ⟧ᵉ σ γ) ℤ′.×′ 1ℤ - ⟦ tup [] ⟧ᵉ σ γ = _ - ⟦ tup (e ∷ []) ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ - ⟦ tup (e ∷ e′ ∷ es) ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ , ⟦ tup (e′ ∷ es) ⟧ᵉ σ γ - ⟦ call f e ⟧ᵉ σ γ = ⟦ f ⟧ᶠ σ (⟦ e ⟧ᵉ σ γ) + ⟦ nil ⟧ᵉ σ γ = _ + ⟦ cons {ts = ts} e e₁ ⟧ᵉ σ γ = tupCons ts (⟦ e ⟧ᵉ σ γ) (⟦ e₁ ⟧ᵉ σ γ) + ⟦ head {ts = ts} e ⟧ᵉ σ γ = tupHead ts (⟦ e ⟧ᵉ σ γ) + ⟦ tail {ts = ts} e ⟧ᵉ σ γ = tupTail ts (⟦ e ⟧ᵉ σ γ) + ⟦ call f e ⟧ᵉ σ γ = ⟦ f ⟧ᶠ σ (⟦ e ⟧ᵉ′ σ γ) ⟦ if e then e₁ else e₂ ⟧ᵉ σ γ = Bool.if ⟦ e ⟧ᵉ σ γ then ⟦ e₁ ⟧ᵉ σ γ else ⟦ e₂ ⟧ᵉ σ γ + ⟦ [] ⟧ᵉ′ σ γ = _ + ⟦ e ∷ [] ⟧ᵉ′ σ γ = ⟦ e ⟧ᵉ σ γ + ⟦ e ∷ e′ ∷ es ⟧ᵉ′ σ γ = ⟦ e ⟧ᵉ σ γ , ⟦ e′ ∷ es ⟧ᵉ′ σ γ + ⟦ s ∙ s₁ ⟧ˢ σ γ = P.uncurry ⟦ s ⟧ˢ (⟦ s ⟧ˢ σ γ) ⟦ skip ⟧ˢ σ γ = σ , γ ⟦ _≔_ ref {canAssign = canAssign} e ⟧ˢ σ γ = update (toWitness canAssign) (⟦ e ⟧ᵉ σ γ) σ γ ⟦_⟧ˢ {Γ = Γ} (declare e s) σ γ = P.map₂ (tupTail Γ) (⟦ s ⟧ˢ σ (tupCons Γ (⟦ e ⟧ᵉ σ γ) γ)) - ⟦ invoke p e ⟧ˢ σ γ = ⟦ p ⟧ᵖ σ (⟦ e ⟧ᵉ σ γ) , γ + ⟦ invoke p e ⟧ˢ σ γ = ⟦ p ⟧ᵖ σ (⟦ e ⟧ᵉ′ σ γ) , γ + ⟦ if e then s₁ ⟧ˢ σ γ = Bool.if ⟦ e ⟧ᵉ σ γ then ⟦ s₁ ⟧ˢ σ γ else (σ , γ) ⟦ if e then s₁ else s₂ ⟧ˢ σ γ = Bool.if ⟦ e ⟧ᵉ σ γ then ⟦ s₁ ⟧ˢ σ γ else ⟦ s₂ ⟧ˢ σ γ ⟦_⟧ˢ {Γ = Γ} (for m s) σ γ = helper m ⟦ s ⟧ˢ σ γ where @@ -246,20 +277,23 @@ module Expression ⟦_⟧ᶠ {Γ = Γ} (declare e f) σ γ = ⟦ f ⟧ᶠ σ (tupCons Γ (⟦ e ⟧ᵉ σ γ) γ) ⟦ s ∙end ⟧ᵖ σ γ = P.proj₁ (⟦ s ⟧ˢ σ γ) - ⟦_⟧ᵖ {Γ = Γ} (declare e p) σ γ = ⟦ p ⟧ᵖ σ (tupCons Γ (⟦ e ⟧ᵉ σ γ) γ) - - update (state i {i<o}) v σ γ = updateAt Σ (#_ i {m<n = i<o}) v σ , γ - update {Γ = Γ} (var i {i<n}) v σ γ = σ , updateAt Γ (#_ i {m<n = i<n}) v γ - update abort v σ γ = σ , γ - update (_∶_ {m = m} {t = t} e e₁) v σ γ = do - let σ′ , γ′ = update e (sliced t v (Fin.fromℕ _)) σ γ - update e₁ (sliced t (casted t (ℕₚ.+-comm _ m) v) zero) σ′ γ′ - update [ e ] v σ γ = update e (Vec.head v) σ γ - update (unbox e) v σ γ = update e (v ∷ []) σ γ - update (slice {t = t} {e₁ = e₁} a e₂) v σ γ = updateSliced t (⟦ e₁ ⟧ᵉ σ γ) (⟦ e₂ ⟧ᵉ σ γ) v (λ v → update a v σ γ) + + update (state i) v σ γ = updateAt Σ i v σ , γ + update {Γ = Γ} (var i) v σ γ = σ , updateAt Γ i v γ + update (abort _) v σ γ = σ , γ + update ([_] {t = t} e) v σ γ = update e (unboxed t v) σ γ + update (unbox {t = t} e) v σ γ = update e (box t v) σ γ + update (splice {m = m} {t = t} e e₁ e₂) v σ γ = do + let i = ⟦ e₂ ⟧ᵉ σ γ + let σ′ , γ′ = update e (P.proj₁ (sliced t v i)) σ γ + update e₁ (P.proj₂ (sliced t v i)) σ′ γ′ + update (cut {t = t} a e₂) v σ γ = do + let i = ⟦ e₂ ⟧ᵉ σ γ + update a (spliced t (P.proj₁ v) (P.proj₂ v) i) σ γ update (cast {t = t} eq e) v σ γ = update e (casted t (≡.sym eq) v) σ γ - update (tup {es = []} x) v σ γ = σ , γ - update (tup {es = _ ∷ []} (x ∷ [])) v σ γ = update x v σ γ - update (tup {es = _ ∷ _ ∷ _} (x ∷ xs)) (v , vs) σ γ = do - let σ′ , γ′ = update x v σ γ - update (tup xs) vs σ′ γ′ + update nil v σ γ = σ , γ + update (cons {ts = ts} e e₁) vs σ γ = do + let σ′ , γ′ = update e (tupHead ts vs) σ γ + update e₁ (tupTail ts vs) σ′ γ′ + update (head {ts = ts} {e = e} a) v σ γ = update a (tupCons ts v (tupTail ts (⟦ e ⟧ᵉ σ γ))) σ γ + update (tail {ts = ts} {e = e} a) v σ γ = update a (tupCons ts (tupHead ts (⟦ e ⟧ᵉ σ γ)) v) σ γ |