diff options
Diffstat (limited to 'src/Helium/Algebra/Ordered/StrictTotal/Properties/Group.agda')
-rw-r--r-- | src/Helium/Algebra/Ordered/StrictTotal/Properties/Group.agda | 15 |
1 files changed, 15 insertions, 0 deletions
diff --git a/src/Helium/Algebra/Ordered/StrictTotal/Properties/Group.agda b/src/Helium/Algebra/Ordered/StrictTotal/Properties/Group.agda index 5cf2d5b..81c57ad 100644 --- a/src/Helium/Algebra/Ordered/StrictTotal/Properties/Group.agda +++ b/src/Helium/Algebra/Ordered/StrictTotal/Properties/Group.agda @@ -213,3 +213,18 @@ x<y⇒ε<y∙x⁻¹ {x} {y} x<y = begin-strict y ∙ (x ⁻¹ ∙ x) ≈⟨ ∙-congˡ (inverseˡ x) ⟩ y ∙ ε ≈⟨ identityʳ y ⟩ y ∎ + +x≤y⇒ε≤y∙x⁻¹ : ∀ {x y} → x ≤ y → ε ≤ y ∙ x ⁻¹ +x≤y⇒ε≤y∙x⁻¹ {x} {y} x≤y = begin + ε ≈˘⟨ inverseʳ x ⟩ + x ∙ x ⁻¹ ≤⟨ ∙-monoʳ-≤ x≤y ⟩ + y ∙ x ⁻¹ ∎ + +ε≤y∙x⁻¹⇒x≤y : ∀ {x y} → ε ≤ y ∙ x ⁻¹ → x ≤ y +ε≤y∙x⁻¹⇒x≤y {x} {y} ε≤y∙x⁻¹ = begin + x ≈˘⟨ identityˡ x ⟩ + ε ∙ x ≤⟨ ∙-monoʳ-≤ ε≤y∙x⁻¹ ⟩ + y ∙ x ⁻¹ ∙ x ≈⟨ assoc y (x ⁻¹) x ⟩ + y ∙ (x ⁻¹ ∙ x) ≈⟨ ∙-congˡ (inverseˡ x) ⟩ + y ∙ ε ≈⟨ identityʳ y ⟩ + y ∎ |