diff options
Diffstat (limited to 'src/Helium/Algebra/Ordered/StrictTotal/Properties/Ring.agda')
-rw-r--r-- | src/Helium/Algebra/Ordered/StrictTotal/Properties/Ring.agda | 81 |
1 files changed, 81 insertions, 0 deletions
diff --git a/src/Helium/Algebra/Ordered/StrictTotal/Properties/Ring.agda b/src/Helium/Algebra/Ordered/StrictTotal/Properties/Ring.agda new file mode 100644 index 0000000..484143c --- /dev/null +++ b/src/Helium/Algebra/Ordered/StrictTotal/Properties/Ring.agda @@ -0,0 +1,81 @@ +------------------------------------------------------------------------ +-- Agda Helium +-- +-- Algebraic properties of ordered rings +------------------------------------------------------------------------ + +{-# OPTIONS --safe --without-K #-} + +open import Helium.Algebra.Ordered.StrictTotal.Bundles + +module Helium.Algebra.Ordered.StrictTotal.Properties.Ring + {ℓ₁ ℓ₂ ℓ₃} + (ring : Ring ℓ₁ ℓ₂ ℓ₃) + where + +open Ring ring + +open import Agda.Builtin.FromNat +open import Agda.Builtin.FromNeg +open import Data.Nat using (suc; NonZero) +open import Data.Sum using (inj₁; inj₂) +open import Data.Unit.Polymorphic using (⊤) +open import Relation.Binary using (tri<; tri≈; tri>) +open import Relation.Binary.Reasoning.StrictPartialOrder strictPartialOrder + +open import Algebra.Properties.Ring Unordered.ring public + renaming (-0#≈0# to -0≈0) +open import Algebra.Properties.Semiring.Mult.TCOptimised Unordered.semiring public +open import Algebra.Properties.Semiring.Exp.TCOptimised Unordered.semiring public +open import Helium.Algebra.Ordered.StrictTotal.Properties.AbelianGroup +-abelianGroup public + using (<⇒≱; ≤⇒≯; >⇒≉; ≈⇒≯; <⇒≉; ≈⇒≮; ≤∧≉⇒<; ≥∧≉⇒>) + renaming + ( x<y⇒ε<yx⁻¹ to x<y⇒0<y-x + ; ⁻¹-anti-mono to -‿anti-mono + ) + +instance + ⊤′ : ∀ {ℓ} → ⊤ {ℓ = ℓ} + ⊤′ = _ + + number : Number Carrier + number = record + { Constraint = λ _ → ⊤ + ; fromNat = _× 1# + } + + negative : Negative Carrier + negative = record + { Constraint = λ _ → ⊤ + ; fromNeg = λ x → - (x × 1#) + } + +0≤1 : 0 ≤ 1 +0≤1 with compare 0 1 +... | tri< 0<1 _ _ = inj₁ 0<1 +... | tri≈ _ 0≈1 _ = inj₂ 0≈1 +... | tri> _ _ 0>1 = inj₁ (begin-strict + 0 <⟨ 0<a+0<b⇒0<ab 0<-1 0<-1 ⟩ + -1 * -1 ≈˘⟨ -‿distribˡ-* 1 -1 ⟩ + - (1 * -1) ≈⟨ -‿cong (*-identityˡ -1) ⟩ + - -1 ≈⟨ -‿involutive 1 ⟩ + 1 ∎) + where + 0<-1 = begin-strict + 0 ≈˘⟨ -0≈0 ⟩ + - 0 <⟨ -‿anti-mono 0>1 ⟩ + -1 ∎ + +1≉0+n≉0⇒0<+n : 1 ≉ 0 → ∀ n → {{NonZero n}} → 0 < fromNat n +1≉0+n≉0⇒0<+n 1≉0 (suc 0) = ≥∧≉⇒> 0≤1 1≉0 +1≉0+n≉0⇒0<+n 1≉0 (suc (suc n)) = begin-strict + 0 ≈˘⟨ +-identity² ⟩ + 0 + 0 <⟨ +-invariantˡ 0 (≥∧≉⇒> 0≤1 1≉0) ⟩ + 0 + 1 <⟨ +-invariantʳ 1 (1≉0+n≉0⇒0<+n 1≉0 (suc n)) ⟩ + fromNat (suc n) + 1 ∎ + +1≉0+n≉0⇒-n<0 : 1 ≉ 0 → ∀ n → {{NonZero n}} → fromNeg n < 0 +1≉0+n≉0⇒-n<0 1≉0 n = begin-strict + - fromNat n <⟨ -‿anti-mono (1≉0+n≉0⇒0<+n 1≉0 n) ⟩ + - 0 ≈⟨ -0≈0 ⟩ + 0 ∎ |