summaryrefslogtreecommitdiff
path: root/src/Helium/Semantics/Axiomatic/Core.agda
diff options
context:
space:
mode:
Diffstat (limited to 'src/Helium/Semantics/Axiomatic/Core.agda')
-rw-r--r--src/Helium/Semantics/Axiomatic/Core.agda85
1 files changed, 85 insertions, 0 deletions
diff --git a/src/Helium/Semantics/Axiomatic/Core.agda b/src/Helium/Semantics/Axiomatic/Core.agda
new file mode 100644
index 0000000..3b7e8db
--- /dev/null
+++ b/src/Helium/Semantics/Axiomatic/Core.agda
@@ -0,0 +1,85 @@
+------------------------------------------------------------------------
+-- Agda Helium
+--
+-- Base definitions for the axiomatic semantics
+------------------------------------------------------------------------
+
+{-# OPTIONS --safe --without-K #-}
+
+open import Helium.Data.Pseudocode.Types using (RawPseudocode)
+
+module Helium.Semantics.Axiomatic.Core
+ {b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃}
+ (rawPseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃)
+ where
+
+private
+ open module C = RawPseudocode rawPseudocode
+
+open import Data.Bool as Bool using (Bool)
+open import Data.Fin as Fin using (Fin; zero; suc)
+open import Data.Fin.Patterns
+open import Data.Nat as ℕ using (ℕ; suc)
+import Data.Nat.Induction as Natᵢ
+import Data.Nat.Properties as ℕₚ
+open import Data.Product as × using (_×_; _,_; uncurry)
+open import Data.Sum using (_⊎_)
+open import Data.Unit using (⊤)
+open import Data.Vec as Vec using (Vec; []; _∷_; _++_; lookup)
+open import Data.Vec.Relation.Unary.All as All using (All; []; _∷_)
+open import Function using (_on_)
+open import Helium.Data.Pseudocode.Core
+open import Helium.Data.Pseudocode.Properties
+import Induction.WellFounded as Wf
+open import Level using (_⊔_; Lift; lift)
+import Relation.Binary.Construct.On as On
+open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; cong₂)
+open import Relation.Nullary using (Dec; does; yes; no)
+open import Relation.Nullary.Decidable.Core using (True; toWitness; map′)
+open import Relation.Nullary.Product using (_×-dec_)
+open import Relation.Unary using (_⊆_)
+
+private
+ variable
+ t t′ : Type
+ m n : ℕ
+ Γ Δ Σ ts : Vec Type m
+
+⟦_⟧ₜ : Type → Set (b₁ ⊔ i₁ ⊔ r₁)
+⟦_⟧ₜ′ : Vec Type n → Set (b₁ ⊔ i₁ ⊔ r₁)
+
+⟦ bool ⟧ₜ = Lift (b₁ ⊔ i₁ ⊔ r₁) Bool
+⟦ int ⟧ₜ = Lift (b₁ ⊔ r₁) ℤ
+⟦ fin n ⟧ₜ = Lift (b₁ ⊔ i₁ ⊔ r₁) (Fin n)
+⟦ real ⟧ₜ = Lift (b₁ ⊔ i₁) ℝ
+⟦ bit ⟧ₜ = Lift (i₁ ⊔ r₁) Bit
+⟦ bits n ⟧ₜ = Vec ⟦ bit ⟧ₜ n
+⟦ tuple n ts ⟧ₜ = ⟦ ts ⟧ₜ′
+⟦ array t n ⟧ₜ = Vec ⟦ t ⟧ₜ n
+
+⟦ [] ⟧ₜ′ = Lift (b₁ ⊔ i₁ ⊔ r₁) ⊤
+⟦ t ∷ ts ⟧ₜ′ = ⟦ t ⟧ₜ × ⟦ ts ⟧ₜ′
+
+fetch : ∀ i → ⟦ Γ ⟧ₜ′ → ⟦ lookup Γ i ⟧ₜ
+fetch {Γ = _ ∷ _} 0F (x , _) = x
+fetch {Γ = _ ∷ _} (suc i) (_ , xs) = fetch i xs
+
+Transform : Vec Type m → Type → Set (b₁ ⊔ i₁ ⊔ r₁)
+Transform ts t = ⟦ ts ⟧ₜ′ → ⟦ t ⟧ₜ
+
+Predicate : Vec Type m → Set (b₁ ⊔ i₁ ⊔ r₁)
+Predicate ts = ⟦ ts ⟧ₜ′ → Bool
+
+-- data HoareTriple {n Γ m Δ} : Assertion Σ {n} Γ {m} Δ → Statement Γ → Assertion Σ Γ Δ → Set (b₁ ⊔ i₁ ⊔ r₁) where
+-- _∙_ : ∀ {P Q R s₁ s₂} → HoareTriple P s₁ Q → HoareTriple Q s₂ R → HoareTriple P (s₁ ∙ s₂) R
+-- skip : ∀ {P} → HoareTriple P skip P
+
+-- assign : ∀ {P t ref canAssign e} → HoareTriple (asrtSubst P (toWitness canAssign) (ℰ e)) (_≔_ {t = t} ref {canAssign} e) P
+-- declare : ∀ {t P Q e s} → HoareTriple (P ∧ equal (var 0F) (termWknVar (ℰ e))) s (asrtWknVar Q) → HoareTriple (asrtElimVar P (ℰ e)) (declare {t = t} e s) Q
+-- invoke : ∀ {m ts P Q s e} → HoareTriple (assignMetas Δ ts (All.tabulate var) (asrtAddVars P)) s (asrtAddVars Q) → HoareTriple (assignMetas Δ ts (All.tabulate (λ i → ℰ (All.lookup i e))) (asrtAddVars P)) (invoke {m = m} {ts} (s ∙end) e) (asrtAddVars Q)
+-- if : ∀ {P Q e s₁ s₂} → HoareTriple (P ∧ equal (ℰ e) (𝒦 (Bool.true ′b))) s₁ Q → HoareTriple (P ∧ equal (ℰ e) (𝒦 (Bool.false ′b))) s₂ Q → HoareTriple P (if e then s₁ else s₂) Q
+-- for : ∀ {m} {I : Assertion Σ Γ (fin (suc m) ∷ Δ)} {s} → HoareTriple (some (asrtWknVar (asrtWknMetaAt 1F I) ∧ equal (meta 1F) (var 0F) ∧ equal (meta 0F) (func (λ { _ (lift x ∷ []) → lift (Fin.inject₁ x) }) (meta 1F ∷ [])))) s (some (asrtWknVar (asrtWknMetaAt 1F I) ∧ equal (meta 0F) (func (λ { _ (lift x ∷ []) → lift (Fin.suc x) }) (meta 1F ∷ [])))) → HoareTriple (some (I ∧ equal (meta 0F) (func (λ _ _ → lift 0F) []))) (for m s) (some (I ∧ equal (meta 0F) (func (λ _ _ → lift (Fin.fromℕ m)) [])))
+
+-- consequence : ∀ {P₁ P₂ Q₁ Q₂ s} → ⟦ P₁ ⟧ₐ ⊆ ⟦ P₂ ⟧ₐ → HoareTriple P₂ s Q₂ → ⟦ Q₂ ⟧ₐ ⊆ ⟦ Q₁ ⟧ₐ → HoareTriple P₁ s Q₁
+-- some : ∀ {t P Q s} → HoareTriple P s Q → HoareTriple (some {t = t} P) s (some Q)
+-- frame : ∀ {P Q R s} → HoareTriple P s Q → HoareTriple (P * R) s (Q * R)