summaryrefslogtreecommitdiff
path: root/src/Helium/Semantics/Denotational.agda
diff options
context:
space:
mode:
Diffstat (limited to 'src/Helium/Semantics/Denotational.agda')
-rw-r--r--src/Helium/Semantics/Denotational.agda141
1 files changed, 141 insertions, 0 deletions
diff --git a/src/Helium/Semantics/Denotational.agda b/src/Helium/Semantics/Denotational.agda
new file mode 100644
index 0000000..b80378b
--- /dev/null
+++ b/src/Helium/Semantics/Denotational.agda
@@ -0,0 +1,141 @@
+{-# OPTIONS --safe --without-K #-}
+
+open import Helium.Data.Pseudocode
+
+module Helium.Semantics.Denotational
+ {b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃}
+ (pseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃)
+ where
+
+open import Data.Fin as Fin hiding (cast; lift; _+_)
+import Data.Fin.Properties as Finₚ
+open import Data.Maybe using (just; nothing; _>>=_)
+open import Data.Nat hiding (_⊔_)
+import Data.Nat.Properties as ℕₚ
+open import Data.Product using (∃; _,_; dmap)
+open import Data.Sum using ([_,_]′)
+open import Data.Vec.Functional as V using (Vector)
+open import Function.Nary.NonDependent.Base
+open import Helium.Instructions
+import Helium.Semantics.Denotational.Core as Core
+open import Level hiding (lift; zero; suc)
+open import Relation.Binary using (Transitive)
+open import Relation.Binary.PropositionalEquality
+open import Relation.Nullary
+open import Relation.Nullary.Decidable
+
+open RawPseudocode pseudocode
+
+private
+ ℓ : Level
+ ℓ = b₁
+
+record State : Set ℓ where
+ field
+ S : Vector (Bits 32) 32
+ R : Vector (Bits 32) 16
+
+open Core State
+
+Beat : Set
+Beat = Fin 4
+
+ElmtMask : Set b₁
+ElmtMask = Bits 4
+
+-- State properties
+
+&R : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (Fin 16) → Reference n Γ (Bits 32)
+&R e = record
+ { get = λ σ ρ → e σ ρ >>= λ (σ , i) → just (σ , State.R σ i)
+ ; set = λ σ ρ x → e σ ρ >>= λ (σ , i) → just (record σ { R = V.updateAt i (λ _ → x) (State.R σ) } , ρ)
+ }
+
+&S : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (Fin 32) → Reference n Γ (Bits 32)
+&S e = record
+ { get = λ σ ρ → e σ ρ >>= λ (σ , i) → just (σ , State.S σ i)
+ ; set = λ σ ρ x → e σ ρ >>= λ (σ , i) → just (record σ { S = V.updateAt i (λ _ → x) (State.S σ) } , ρ)
+ }
+
+&Q : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ VecReg → Expr n Γ Beat → Reference n Γ (Bits 32)
+&Q reg beat = &S (λ σ ρ → reg σ ρ >>= λ (σ , reg) → beat σ ρ >>= λ (σ , beat) → just (σ , combine reg beat))
+
+-- Reference properties
+
+&cast : ∀ {k m n ls} {Γ : Sets n ls} → .(eq : k ≡ m) → Reference n Γ (Bits k) → Reference n Γ (Bits m)
+&cast eq &v = record
+ { get = λ σ ρ → Reference.get &v σ ρ >>= λ (σ , v) → just (σ , cast eq v)
+ ; set = λ σ ρ x → Reference.set &v σ ρ (cast (sym eq) x)
+ }
+
+slice : ∀ {k m n ls} {Γ : Sets n ls} → Reference n Γ (Bits m) → Expr n Γ (∃ λ (i : Fin (suc m)) → ∃ λ j → toℕ (i - j) ≡ k) → Reference n Γ (Bits k)
+slice &v idx = record
+ { get = λ σ ρ → Reference.get &v σ ρ >>= λ (σ , v) → idx σ ρ >>= λ (σ , i , j , i-j≡k) → just (σ , cast i-j≡k (sliceᵇ i j v))
+ ; set = λ σ ρ v → Reference.get &v σ ρ >>= λ (σ , v′) → idx σ ρ >>= λ (σ , i , j , i-j≡k) → Reference.set &v σ ρ (updateᵇ i j (cast (sym i-j≡k) v) v′)
+ }
+
+elem : ∀ {k n ls} {Γ : Sets n ls} m → Reference n Γ (Bits (k * m)) → Expr n Γ (Fin k) → Reference n Γ (Bits m)
+elem m &v idx = slice &v λ σ ρ → idx σ ρ >>= λ (σ , i) → just (σ , helper _ _ i)
+ where
+ helper : ∀ m n → Fin m → ∃ λ (i : Fin (suc (m * n))) → ∃ λ j → toℕ (i - j) ≡ n
+ helper (suc m) n zero = inject+ (m * n) (fromℕ n) , # 0 , eq
+ where
+ eq = trans (sym (Finₚ.toℕ-inject+ (m * n) (fromℕ n))) (Finₚ.toℕ-fromℕ n)
+ helper (suc m) n (suc i) with x , y , x-y≡n ← helper m n i =
+ u ,
+ v ,
+ trans
+ (cast‿- (raise n x) (Fin.cast eq₂ (raise n y)) eq₁)
+ (trans (raise‿- (suc (m * n)) n x y eq₂) x-y≡n)
+ where
+ eq₁ = ℕₚ.+-suc n (m * n)
+ eq₂ = trans (ℕₚ.+-suc n (toℕ x)) (cong suc (sym (Finₚ.toℕ-raise n x)))
+ eq₂′ = cong suc (sym (Finₚ.toℕ-cast eq₁ (raise n x)))
+ u = Fin.cast eq₁ (raise n x)
+ v = Fin.cast eq₂′ (Fin.cast eq₂ (raise n y))
+
+ raise‿- : ∀ m n (x : Fin m) y .(eq : n + suc (toℕ x) ≡ suc (toℕ (raise n x))) → toℕ (raise n x - Fin.cast eq (raise n y)) ≡ toℕ (x - y)
+ raise‿- m ℕ.zero x zero _ = refl
+ raise‿- (suc m) ℕ.zero (suc x) (suc y) p = raise‿- m ℕ.zero x y (ℕₚ.suc-injective p)
+ raise‿- m (suc n) x y p = raise‿- m n x y (ℕₚ.suc-injective p)
+
+ cast‿- : ∀ {m n} (x : Fin m) y .(eq : m ≡ n) → toℕ (Fin.cast eq x - Fin.cast (cong suc (sym (Finₚ.toℕ-cast eq x))) y) ≡ toℕ (x - y)
+ cast‿- {suc m} {suc n} x zero eq = Finₚ.toℕ-cast eq x
+ cast‿- {suc m} {suc n} (suc x) (suc y) eq = cast‿- x y (ℕₚ.suc-injective eq)
+
+-- Instruction semantics
+
+module _
+ (≈ᶻ-trans : Transitive _≈ᶻ_)
+ (round∘⟦⟧ : ∀ x → x ≈ᶻ round ⟦ x ⟧)
+ (round-cong : ∀ {x y} → x ≈ʳ y → round x ≈ᶻ round y)
+ (0#-homo-round : round 0ℝ ≈ᶻ 0ℤ)
+ (2^n≢0 : ∀ n → False (2ℤ ^ᶻ n ≟ᶻ 0ℤ))
+ (*ᶻ-identityʳ : ∀ x → x *ᶻ 1ℤ ≈ᶻ x)
+ where
+
+ open sliceᶻ ≈ᶻ-trans round∘⟦⟧ round-cong 0#-homo-round 2^n≢0 *ᶻ-identityʳ
+
+ vadd : VAdd.VAdd → Procedure 2 (Beat , ElmtMask , _)
+ vadd d = declare ⦇ zeros ⦈ (declare (! &Q ⦇ src₁ ⦈ (!# 1)) (label λ
+ result op₁ beat elmtMask →
+ [ (λ src₂ → for (toℕ elements) (lift (
+ elem (toℕ esize) (&cast (sym e*e≡32) (wknRef result)) (!# 0) ≔
+ ⦇ ! elem (toℕ esize) (&cast (sym e*e≡32) (wknRef op₁)) (!# 0) +ᵇ
+ ! slice (&R ⦇ src₂ ⦈) ⦇ (esize , zero , refl) ⦈ ⦈)) )
+ , (λ src₂ → declare (! &Q ⦇ src₂ ⦈ (! beat)) (for (toℕ elements) (lift (
+ elem (toℕ esize) (&cast (sym e*e≡32) (wknRef (wknRef result))) (!# 0) ≔
+ ⦇ ! elem (toℕ esize) (&cast (sym e*e≡32) (wknRef (wknRef op₁))) (!# 0) +ᵇ
+ ! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 1))) (!# 0) ⦈))))
+ ]′ src₂ ∙
+ for 4 (lift (
+ if ⦇ (λ x y → does (getᵇ y x ≟ᵇ 1b)) (! wknRef elmtMask) (!# 0) ⦈
+ then
+ elem 8 (&Q ⦇ dest ⦈ (! wknRef beat)) (!# 0) ≔ (! elem 8 (wknRef result) (!# 0))
+ else
+ skip))))
+ where
+ open VAdd.VAdd d
+ esize = VAdd.esize d
+ elements = VAdd.elements d
+ e*e≡32 = VAdd.elem*esize≡32 d