diff options
Diffstat (limited to 'src/Helium/Semantics/Denotational')
-rw-r--r-- | src/Helium/Semantics/Denotational/Core.agda | 323 |
1 files changed, 323 insertions, 0 deletions
diff --git a/src/Helium/Semantics/Denotational/Core.agda b/src/Helium/Semantics/Denotational/Core.agda new file mode 100644 index 0000000..6dd76b0 --- /dev/null +++ b/src/Helium/Semantics/Denotational/Core.agda @@ -0,0 +1,323 @@ +------------------------------------------------------------------------ +-- Agda Helium +-- +-- Base definitions for the denotational semantics. +------------------------------------------------------------------------ + +{-# OPTIONS --safe --without-K #-} + +open import Helium.Data.Pseudocode.Types using (RawPseudocode) + +module Helium.Semantics.Denotational.Core + {b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃} + (rawPseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃) + where + +private + open module C = RawPseudocode rawPseudocode + +open import Data.Bool as Bool using (Bool; true; false) +open import Data.Fin as Fin using (Fin; zero; suc; #_) +import Data.Fin.Properties as Finₚ +open import Data.Nat as ℕ using (ℕ; zero; suc) +import Data.Nat.Properties as ℕₚ +open import Data.Product as P using (_×_; _,_) +open import Data.Sum as S using (_⊎_) renaming (inj₁ to next; inj₂ to ret) +open import Data.Unit using (⊤) +open import Data.Vec as Vec using (Vec; []; _∷_) +open import Data.Vec.Relation.Unary.All using (All; []; _∷_) +import Data.Vec.Functional as VecF +open import Function using (case_of_; _∘′_; id) +open import Helium.Data.Pseudocode.Core +import Induction as I +import Induction.WellFounded as Wf +open import Level hiding (zero; suc) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; module ≡-Reasoning) +open import Relation.Nullary using (does) +open import Relation.Nullary.Decidable.Core using (True; False; toWitness; fromWitness) + +⟦_⟧ₗ : Type → Level +⟦ unit ⟧ₗ = 0ℓ +⟦ bool ⟧ₗ = 0ℓ +⟦ int ⟧ₗ = i₁ +⟦ fin n ⟧ₗ = 0ℓ +⟦ real ⟧ₗ = r₁ +⟦ bits n ⟧ₗ = b₁ +⟦ tuple n ts ⟧ₗ = helper ts + where + helper : ∀ {n} → Vec Type n → Level + helper [] = 0ℓ + helper (t ∷ ts) = ⟦ t ⟧ₗ ⊔ helper ts +⟦ array t n ⟧ₗ = ⟦ t ⟧ₗ + +⟦_⟧ₜ : ∀ t → Set ⟦ t ⟧ₗ +⟦_⟧ₜ′ : ∀ {n} ts → Set ⟦ tuple n ts ⟧ₗ + +⟦ unit ⟧ₜ = ⊤ +⟦ bool ⟧ₜ = Bool +⟦ int ⟧ₜ = ℤ +⟦ fin n ⟧ₜ = Fin n +⟦ real ⟧ₜ = ℝ +⟦ bits n ⟧ₜ = Bits n +⟦ tuple n ts ⟧ₜ = ⟦ ts ⟧ₜ′ +⟦ array t n ⟧ₜ = Vec ⟦ t ⟧ₜ n + +⟦ [] ⟧ₜ′ = ⟦ unit ⟧ₜ +⟦ t ∷ [] ⟧ₜ′ = ⟦ t ⟧ₜ +⟦ t ∷ t′ ∷ ts ⟧ₜ′ = ⟦ t ⟧ₜ × ⟦ t′ ∷ ts ⟧ₜ′ + +-- The case for bitvectors looks odd so that the right-most bit is bit 0. +𝒦 : ∀ {t} → Literal t → ⟦ t ⟧ₜ +𝒦 (x ′b) = x +𝒦 (x ′i) = x ℤ′.×′ 1ℤ +𝒦 (x ′f) = x +𝒦 (x ′r) = x ℝ′.×′ 1ℝ +𝒦 (xs ′x) = Vec.foldl Bits (λ bs b → (Bool.if b then 1𝔹 else 0𝔹) VecF.∷ bs) VecF.[] xs +𝒦 (x ′a) = Vec.replicate (𝒦 x) + + +fetch : ∀ {n} ts → ⟦ tuple n ts ⟧ₜ → ∀ i → ⟦ Vec.lookup ts i ⟧ₜ +fetch (_ ∷ []) x zero = x +fetch (_ ∷ _ ∷ _) (x , xs) zero = x +fetch (_ ∷ t ∷ ts) (x , xs) (suc i) = fetch (t ∷ ts) xs i + +updateAt : ∀ {n} ts i → ⟦ Vec.lookup ts i ⟧ₜ → ⟦ tuple n ts ⟧ₜ → ⟦ tuple n ts ⟧ₜ +updateAt (_ ∷ []) zero v _ = v +updateAt (_ ∷ _ ∷ _) zero v (_ , xs) = v , xs +updateAt (_ ∷ t ∷ ts) (suc i) v (x , xs) = x , updateAt (t ∷ ts) i v xs + +tupCons : ∀ {n t} ts → ⟦ t ⟧ₜ → ⟦ tuple n ts ⟧ₜ → ⟦ tuple _ (t ∷ ts) ⟧ₜ +tupCons [] x xs = x +tupCons (t ∷ ts) x xs = x , xs + +tupHead : ∀ {n t} ts → ⟦ tuple (suc n) (t ∷ ts) ⟧ₜ → ⟦ t ⟧ₜ +tupHead {t = t} ts xs = fetch (t ∷ ts) xs zero + +tupTail : ∀ {n t} ts → ⟦ tuple _ (t ∷ ts) ⟧ₜ → ⟦ tuple n ts ⟧ₜ +tupTail [] x = _ +tupTail (_ ∷ _) (x , xs) = xs + +equal : ∀ {t} → HasEquality t → ⟦ t ⟧ₜ → ⟦ t ⟧ₜ → Bool +equal bool x y = does (x Bool.≟ y) +equal int x y = does (x ≟ᶻ y) +equal fin x y = does (x Fin.≟ y) +equal real x y = does (x ≟ʳ y) +equal bits x y = does (x ≟ᵇ y) + +comp : ∀ {t} → IsNumeric t → ⟦ t ⟧ₜ → ⟦ t ⟧ₜ → Bool +comp int x y = does (x <ᶻ? y) +comp real x y = does (x <ʳ? y) + +-- 0 of y is 0 of result +join : ∀ t {m n} → ⟦ asType t m ⟧ₜ → ⟦ asType t n ⟧ₜ → ⟦ asType t (n ℕ.+ m) ⟧ₜ +join bits {m} x y = y VecF.++ x +join (array _) {m} x y = y Vec.++ x + +-- take from 0 +take : ∀ t i {j} → ⟦ asType t (i ℕ.+ j) ⟧ₜ → ⟦ asType t i ⟧ₜ +take bits i x = VecF.take i x +take (array _) i x = Vec.take i x + +-- drop from 0 +drop : ∀ t i {j} → ⟦ asType t (i ℕ.+ j) ⟧ₜ → ⟦ asType t j ⟧ₜ +drop bits i x = VecF.drop i x +drop (array _) i x = Vec.drop i x + +casted : ∀ t {i j} → .(eq : i ≡ j) → ⟦ asType t i ⟧ₜ → ⟦ asType t j ⟧ₜ +casted bits eq x = x ∘′ Fin.cast (≡.sym eq) +casted (array _) {j = zero} eq [] = [] +casted (array t) {j = suc _} eq (x ∷ y) = x ∷ casted (array t) (ℕₚ.suc-injective eq) y + +module _ where + m≤n⇒m+k≡n : ∀ {m n} → m ℕ.≤ n → P.∃ λ k → m ℕ.+ k ≡ n + m≤n⇒m+k≡n ℕ.z≤n = _ , ≡.refl + m≤n⇒m+k≡n (ℕ.s≤s m≤n) = P.dmap id (≡.cong suc) (m≤n⇒m+k≡n m≤n) + + slicedSize : ∀ i j (off : Fin (suc i)) → P.∃ λ k → i ℕ.+ j ≡ Fin.toℕ off ℕ.+ (j ℕ.+ k) + slicedSize i j off = k , (begin + i ℕ.+ j ≡˘⟨ ≡.cong (ℕ._+ j) (P.proj₂ off+k≤i) ⟩ + (Fin.toℕ off ℕ.+ k) ℕ.+ j ≡⟨ ℕₚ.+-assoc (Fin.toℕ off) k j ⟩ + Fin.toℕ off ℕ.+ (k ℕ.+ j) ≡⟨ ≡.cong (Fin.toℕ off ℕ.+_) (ℕₚ.+-comm k j) ⟩ + Fin.toℕ off ℕ.+ (j ℕ.+ k) ∎) + where + open ≡-Reasoning + off+k≤i = m≤n⇒m+k≡n (ℕₚ.≤-pred (Finₚ.toℕ<n off)) + k = P.proj₁ off+k≤i + + sliced : ∀ t {i j} → ⟦ asType t (i ℕ.+ j) ⟧ₜ → ⟦ fin (suc i) ⟧ₜ → ⟦ asType t j ⟧ₜ + sliced t {i} {j} x off = take t j (drop t (Fin.toℕ off) (casted t (P.proj₂ (slicedSize i j off)) x)) + +updateSliced : ∀ {a} {A : Set a} t {i j} → ⟦ asType t (i ℕ.+ j) ⟧ₜ → ⟦ fin (suc i) ⟧ₜ → ⟦ asType t j ⟧ₜ → (⟦ asType t (i ℕ.+ j) ⟧ₜ → A) → A +updateSliced t {i} {j} orig off v f = f (casted t (≡.sym eq) (join t (join t untaken v) dropped)) + where + eq = P.proj₂ (slicedSize i j off) + dropped = take t (Fin.toℕ off) (casted t eq orig) + untaken = drop t j (drop t (Fin.toℕ off) (casted t eq orig)) + +neg : ∀ {t} → IsNumeric t → ⟦ t ⟧ₜ → ⟦ t ⟧ₜ +neg int x = ℤ.- x +neg real x = ℝ.- x + +add : ∀ {t₁ t₂} (isNum₁ : True (isNumeric? t₁)) (isNum₂ : True (isNumeric? t₂)) → ⟦ t₁ ⟧ₜ → ⟦ t₂ ⟧ₜ → ⟦ combineNumeric t₁ t₂ {isNum₁} {isNum₂} ⟧ₜ +add {t₁ = int} {t₂ = int} _ _ x y = x ℤ.+ y +add {t₁ = int} {t₂ = real} _ _ x y = x /1 ℝ.+ y +add {t₁ = real} {t₂ = int} _ _ x y = x ℝ.+ y /1 +add {t₁ = real} {t₂ = real} _ _ x y = x ℝ.+ y + +mul : ∀ {t₁ t₂} (isNum₁ : True (isNumeric? t₁)) (isNum₂ : True (isNumeric? t₂)) → ⟦ t₁ ⟧ₜ → ⟦ t₂ ⟧ₜ → ⟦ combineNumeric t₁ t₂ {isNum₁} {isNum₂} ⟧ₜ +mul {t₁ = int} {t₂ = int} _ _ x y = x ℤ.* y +mul {t₁ = int} {t₂ = real} _ _ x y = x /1 ℝ.* y +mul {t₁ = real} {t₂ = int} _ _ x y = x ℝ.* y /1 +mul {t₁ = real} {t₂ = real} _ _ x y = x ℝ.* y + +pow : ∀ {t} → IsNumeric t → ⟦ t ⟧ₜ → ℕ → ⟦ t ⟧ₜ +pow int x n = x ℤ′.^′ n +pow real x n = x ℝ′.^′ n + +shiftr : 2 ℝ′.×′ 1ℝ ℝ.≉ 0ℝ → ⟦ int ⟧ₜ → ℕ → ⟦ int ⟧ₜ +shiftr 2≉0 x n = ⌊ x /1 ℝ.* 2≉0 ℝ.⁻¹ ℝ′.^′ n ⌋ + +module _ + {o} {Σ : Vec Type o} + (2≉0 : 2 ℝ′.×′ 1ℝ ℝ.≉ 0ℝ) + where + + open Code Σ + + ⟦_⟧ᵉ : ∀ {n} {Γ : Vec Type n} {t} → Expression Γ t → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ t ⟧ₜ + ⟦_⟧ˢ : ∀ {n} {Γ : Vec Type n} {ret} → Statement Γ ret → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × (⟦ Γ ⟧ₜ′ ⊎ ⟦ ret ⟧ₜ) + ⟦_⟧ᶠ : ∀ {n} {Γ : Vec Type n} {ret} → Function Γ ret → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ ret ⟧ₜ + ⟦_⟧ᵖ : ∀ {n} {Γ : Vec Type n} → Procedure Γ → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ + update : ∀ {n Γ t e} → CanAssign {n} {Γ} {t} e → ⟦ t ⟧ₜ → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ + + ⟦ lit x ⟧ᵉ σ γ = σ , 𝒦 x + ⟦ state i ⟧ᵉ σ γ = σ , fetch Σ σ (# i) + ⟦_⟧ᵉ {Γ = Γ} (var i) σ γ = σ , fetch Γ γ (# i) + ⟦ abort e ⟧ᵉ σ γ = case P.proj₂ (⟦ e ⟧ᵉ σ γ) of λ () + ⟦ _≟_ {hasEquality = hasEq} e e₁ ⟧ᵉ σ γ = do + let σ′ , x = ⟦ e ⟧ᵉ σ γ + let σ′′ , y = ⟦ e ⟧ᵉ σ′ γ + σ′′ , equal (toWitness hasEq) x y + ⟦ _<?_ {isNumeric = isNum} e e₁ ⟧ᵉ σ γ = do + let σ′ , x = ⟦ e ⟧ᵉ σ γ + let σ′′ , y = ⟦ e ⟧ᵉ σ′ γ + σ′′ , comp (toWitness isNum) x y + ⟦ inv e ⟧ᵉ σ γ = P.map₂ Bool.not (⟦ e ⟧ᵉ σ γ) + ⟦ e && e₁ ⟧ᵉ σ γ = do + let σ′ , x = ⟦ e ⟧ᵉ σ γ + Bool.if x then ⟦ e₁ ⟧ᵉ σ′ γ else σ′ , false + ⟦ e || e₁ ⟧ᵉ σ γ = do + let σ′ , x = ⟦ e ⟧ᵉ σ γ + Bool.if x then σ′ , true else ⟦ e₁ ⟧ᵉ σ′ γ + ⟦ not e ⟧ᵉ σ γ = P.map₂ Bits.¬_ (⟦ e ⟧ᵉ σ γ) + ⟦ e and e₁ ⟧ᵉ σ γ = do + let σ′ , x = ⟦ e ⟧ᵉ σ γ + let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ + σ′′ , x Bits.∧ y + ⟦ e or e₁ ⟧ᵉ σ γ = do + let σ′ , x = ⟦ e ⟧ᵉ σ γ + let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ + σ′′ , x Bits.∨ y + ⟦ [ e ] ⟧ᵉ σ γ = P.map₂ (Vec._∷ []) (⟦ e ⟧ᵉ σ γ) + ⟦ unbox e ⟧ᵉ σ γ = P.map₂ Vec.head (⟦ e ⟧ᵉ σ γ) + ⟦ _∶_ {t = t} e e₁ ⟧ᵉ σ γ = do + let σ′ , x = ⟦ e ⟧ᵉ σ γ + let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ + σ′′ , join t x y + ⟦ slice {t = t} e e₁ ⟧ᵉ σ γ = do + let σ′ , x = ⟦ e ⟧ᵉ σ γ + let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ + σ′′ , sliced t x y + ⟦ cast {t = t} eq e ⟧ᵉ σ γ = P.map₂ (casted t eq) (⟦ e ⟧ᵉ σ γ) + ⟦ -_ {isNumeric = isNum} e ⟧ᵉ σ γ = P.map₂ (neg (toWitness isNum)) (⟦ e ⟧ᵉ σ γ) + ⟦ _+_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁ ⟧ᵉ σ γ = do + let σ′ , x = ⟦ e ⟧ᵉ σ γ + let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ + σ′′ , add isNum₁ isNum₂ x y + ⟦ _*_ {isNumeric₁ = isNum₁} {isNumeric₂ = isNum₂} e e₁ ⟧ᵉ σ γ = do + let σ′ , x = ⟦ e ⟧ᵉ σ γ + let σ′′ , y = ⟦ e₁ ⟧ᵉ σ′ γ + σ′′ , mul isNum₁ isNum₂ x y + -- ⟦ e / e₁ ⟧ᵉ σ γ = {!!} + ⟦ _^_ {isNumeric = isNum} e n ⟧ᵉ σ γ = P.map₂ (λ x → pow (toWitness isNum) x n) (⟦ e ⟧ᵉ σ γ) + ⟦ _>>_ e n ⟧ᵉ σ γ = P.map₂ (λ x → shiftr 2≉0 x n) (⟦ e ⟧ᵉ σ γ) + ⟦ rnd e ⟧ᵉ σ γ = P.map₂ ⌊_⌋ (⟦ e ⟧ᵉ σ γ) + ⟦ fin x e ⟧ᵉ σ γ = P.map₂ (apply x) (⟦ e ⟧ᵉ σ γ) + where + apply : ∀ {k ms n} → (All Fin ms → Fin n) → ⟦ Vec.map {n = k} fin ms ⟧ₜ′ → ⟦ fin n ⟧ₜ + apply {zero} {[]} f xs = f [] + apply {suc k} {_ ∷ ms} f xs = + apply (λ x → f (tupHead (Vec.map fin ms) xs ∷ x)) (tupTail (Vec.map fin ms) xs) + ⟦ asInt e ⟧ᵉ σ γ = P.map₂ (λ i → Fin.toℕ i ℤ′.×′ 1ℤ) (⟦ e ⟧ᵉ σ γ) + ⟦ tup [] ⟧ᵉ σ γ = σ , _ + ⟦ tup (e ∷ []) ⟧ᵉ σ γ = ⟦ e ⟧ᵉ σ γ + ⟦ tup (e ∷ e′ ∷ es) ⟧ᵉ σ γ = do + let σ′ , v = ⟦ e ⟧ᵉ σ γ + let σ′′ , vs = ⟦ tup (e′ ∷ es) ⟧ᵉ σ′ γ + σ′′ , (v , vs) + ⟦ call f e ⟧ᵉ σ γ = P.uncurry ⟦ f ⟧ᶠ (⟦ e ⟧ᵉ σ γ) + ⟦ if e then e₁ else e₂ ⟧ᵉ σ γ = do + let σ′ , x = ⟦ e ⟧ᵉ σ γ + Bool.if x then ⟦ e₁ ⟧ᵉ σ′ γ else ⟦ e₂ ⟧ᵉ σ′ γ + + ⟦ s ∙ s₁ ⟧ˢ σ γ = do + let σ′ , v = ⟦ s ⟧ˢ σ γ + S.[ ⟦ s ⟧ˢ σ′ , (λ v → σ′ , ret v) ] v + ⟦ skip ⟧ˢ σ γ = σ , next γ + ⟦ _≔_ ref {canAssign = canAssign} e ⟧ˢ σ γ = do + let σ′ , v = ⟦ e ⟧ᵉ σ γ + let σ′′ , γ′ = update (toWitness canAssign) v σ′ γ + σ′′ , next γ′ + ⟦_⟧ˢ {Γ = Γ} (declare e s) σ γ = do + let σ′ , x = ⟦ e ⟧ᵉ σ γ + let σ′′ , v = ⟦ s ⟧ˢ σ′ (tupCons Γ x γ) + σ′′ , S.map₁ (tupTail Γ) v + ⟦ invoke p e ⟧ˢ σ γ = do + let σ′ , v = ⟦ e ⟧ᵉ σ γ + ⟦ p ⟧ᵖ σ′ v , next γ + ⟦ if e then s₁ else s₂ ⟧ˢ σ γ = do + let σ′ , x = ⟦ e ⟧ᵉ σ γ + Bool.if x then ⟦ s₁ ⟧ˢ σ′ γ else ⟦ s₂ ⟧ˢ σ′ γ + ⟦_⟧ˢ {Γ = Γ} {ret = t} (for m s) σ γ = helper m ⟦ s ⟧ˢ σ γ + where + helper : ∀ m → (⟦ Σ ⟧ₜ′ → ⟦ fin m ∷ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × (⟦ fin m ∷ Γ ⟧ₜ′ ⊎ ⟦ t ⟧ₜ)) → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × (⟦ Γ ⟧ₜ′ ⊎ ⟦ t ⟧ₜ) + helper zero s σ γ = σ , next γ + helper (suc m) s σ γ with s σ (tupCons Γ zero γ) + ... | σ′ , ret v = σ′ , ret v + ... | σ′ , next γ′ = helper m s′ σ′ (tupTail Γ γ′) + where + s′ : ⟦ Σ ⟧ₜ′ → ⟦ fin m ∷ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × (⟦ fin m ∷ Γ ⟧ₜ′ ⊎ ⟦ t ⟧ₜ) + s′ σ γ = + P.map₂ (S.map₁ (tupCons Γ (tupHead Γ γ) ∘′ (tupTail Γ))) + (s σ (tupCons Γ (suc (tupHead Γ γ)) (tupTail Γ γ))) + + ⟦ s ∙return e ⟧ᶠ σ γ with ⟦ s ⟧ˢ σ γ + ... | σ′ , ret v = σ′ , v + ... | σ′ , next γ′ = ⟦ e ⟧ᵉ σ′ γ′ + ⟦_⟧ᶠ {Γ = Γ} (declare e f) σ γ = do + let σ′ , x = ⟦ e ⟧ᵉ σ γ + ⟦ f ⟧ᶠ σ′ (tupCons Γ x γ) + + ⟦ s ∙end ⟧ᵖ σ γ = P.proj₁ (⟦ s ⟧ˢ σ γ) + ⟦_⟧ᵖ {Γ = Γ} (declare e p) σ γ = do + let σ′ , x = ⟦ e ⟧ᵉ σ γ + ⟦ p ⟧ᵖ σ′ (tupCons Γ x γ) + + update (state i {i<o}) v σ γ = updateAt Σ (#_ i {m<n = i<o}) v σ , γ + update {Γ = Γ} (var i {i<n}) v σ γ = σ , updateAt Γ (#_ i {m<n = i<n}) v γ + update abort v σ γ = σ , γ + update (_∶_ {m = m} {t = t} e e₁) v σ γ = do + let σ′ , γ′ = update e (sliced t v (Fin.fromℕ _)) σ γ + update e₁ (sliced t (casted t (ℕₚ.+-comm _ m) v) zero) σ′ γ′ + update [ e ] v σ γ = update e (Vec.head v) σ γ + update (unbox e) v σ γ = update e (v ∷ []) σ γ + update (slice {t = t} {e₁ = e₁} a e₂) v σ γ = do + let σ′ , off = ⟦ e₂ ⟧ᵉ σ γ + let σ′′ , orig = ⟦ e₁ ⟧ᵉ σ′ γ + updateSliced t orig off v (λ v → update a v σ′′ γ) + update (cast {t = t} eq e) v σ γ = update e (casted t (≡.sym eq) v) σ γ + update (tup {es = []} x) v σ γ = σ , γ + update (tup {es = _ ∷ []} (x ∷ [])) v σ γ = update x v σ γ + update (tup {es = _ ∷ _ ∷ _} (x ∷ xs)) (v , vs) σ γ = do + let σ′ , γ′ = update x v σ γ + update (tup xs) vs σ′ γ′ |