summaryrefslogtreecommitdiff
path: root/src/Helium/Algebra/Ordered/StrictTotal/Structures.agda
blob: b9db3749d44ac504285dd0d7d08322201eb810ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
------------------------------------------------------------------------
-- Agda Helium
--
-- Some ordered algebraic structures (not packed up with sets,
-- operations, etc.)
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

open import Relation.Binary

module Helium.Algebra.Ordered.StrictTotal.Structures
  {a ℓ₁ ℓ₂} {A : Set a} -- The underlying set
  (_≈_ : Rel A ℓ₁)      -- The underlying equality
  (_<_ : Rel A ℓ₂)      -- The underlying order
  where

import Algebra.Consequences.Setoid as Consequences
open import Algebra.Core
open import Algebra.Definitions _≈_
import Algebra.Structures _≈_ as NoOrder
open import Data.Product using (_,_; proj₁; proj₂)
open import Helium.Algebra.Core
open import Helium.Algebra.Definitions _≈_
import Helium.Algebra.Structures _≈_ as NoOrder′
open import Helium.Algebra.Ordered.Definitions _<_
open import Level using (_⊔_)

record IsMagma (∙ : Op₂ A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
  field
    isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_
    ∙-cong      : Congruent₂ ∙
    ∙-invariant : Invariant ∙

  open IsStrictTotalOrder isStrictTotalOrder public

  strictTotalOrder : StrictTotalOrder _ _ _
  strictTotalOrder = record { isStrictTotalOrder = isStrictTotalOrder }

  open module strictTotalOrder = StrictTotalOrder strictTotalOrder public
    using (strictPartialOrder)

  ∙-congˡ : LeftCongruent ∙
  ∙-congˡ y≈z = ∙-cong Eq.refl y≈z

  ∙-congʳ : RightCongruent ∙
  ∙-congʳ y≈z = ∙-cong y≈z Eq.refl

  ∙-invariantˡ : LeftInvariant ∙
  ∙-invariantˡ = proj₁ ∙-invariant

  ∙-invariantʳ : RightInvariant ∙
  ∙-invariantʳ = proj₂ ∙-invariant

  module Unordered where
    isMagma : NoOrder.IsMagma ∙
    isMagma = record { isEquivalence = isEquivalence ; ∙-cong = ∙-cong }

record IsSemigroup (∙ : Op₂ A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
  field
    isMagma : IsMagma ∙
    assoc   : Associative ∙

  open IsMagma isMagma public
    hiding (module Unordered)

  module Unordered where
    isSemigroup : NoOrder.IsSemigroup ∙
    isSemigroup = record
      { isMagma = IsMagma.Unordered.isMagma isMagma
      ; assoc   = assoc
      }

    open NoOrder.IsSemigroup isSemigroup public
      using (isMagma)

record IsMonoid (_∙_ : Op₂ A) (ε : A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
  field
    isSemigroup : IsSemigroup _∙_
    identity    : Identity ε _∙_

  open IsSemigroup isSemigroup public
    hiding (module Unordered)

  identityˡ : LeftIdentity ε _∙_
  identityˡ = proj₁ identity

  identityʳ : RightIdentity ε _∙_
  identityʳ = proj₂ identity

  identity² : (ε ∙ ε) ≈ ε
  identity² = identityˡ ε

  module Unordered where
    isMonoid : NoOrder.IsMonoid _∙_ ε
    isMonoid = record
      { isSemigroup = IsSemigroup.Unordered.isSemigroup isSemigroup
      ; identity    = identity
      }

    open NoOrder.IsMonoid isMonoid public
      using (isMagma; isSemigroup)

record IsGroup (_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
  field
    isMonoid  : IsMonoid _∙_ ε
    inverse   : Inverse ε _⁻¹ _∙_
    ⁻¹-cong   : Congruent₁ _⁻¹

  open IsMonoid isMonoid public
    hiding (module Unordered)

  infixl 6 _-_
  _-_ : Op₂ A
  x - y = x ∙ (y ⁻¹)

  inverseˡ : LeftInverse ε _⁻¹ _∙_
  inverseˡ = proj₁ inverse

  inverseʳ : RightInverse ε _⁻¹ _∙_
  inverseʳ = proj₂ inverse

  uniqueˡ-⁻¹ : ∀ x y → (x ∙ y) ≈ ε → x ≈ (y ⁻¹)
  uniqueˡ-⁻¹ = Consequences.assoc+id+invʳ⇒invˡ-unique
                strictTotalOrder.Eq.setoid ∙-cong assoc identity inverseʳ

  uniqueʳ-⁻¹ : ∀ x y → (x ∙ y) ≈ ε → y ≈ (x ⁻¹)
  uniqueʳ-⁻¹ = Consequences.assoc+id+invˡ⇒invʳ-unique
                strictTotalOrder.Eq.setoid ∙-cong assoc identity inverseˡ

  module Unordered where
    isGroup : NoOrder.IsGroup _∙_ ε _⁻¹
    isGroup = record
      { isMonoid = IsMonoid.Unordered.isMonoid isMonoid
      ; inverse  = inverse
      ; ⁻¹-cong  = ⁻¹-cong
      }

    open NoOrder.IsGroup isGroup public
      using (isMagma; isSemigroup; isMonoid)

record IsAbelianGroup (∙ : Op₂ A)
                      (ε : A) (⁻¹ : Op₁ A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
  field
    isGroup : IsGroup ∙ ε ⁻¹
    comm    : Commutative ∙

  open IsGroup isGroup public
    hiding (module Unordered)

  module Unordered where
    isAbelianGroup : NoOrder.IsAbelianGroup ∙ ε ⁻¹
    isAbelianGroup = record
      { isGroup = IsGroup.Unordered.isGroup isGroup
      ; comm    = comm
      }

    open NoOrder.IsAbelianGroup isAbelianGroup public
      using (isMagma; isSemigroup; isMonoid; isGroup)

record IsRing (+ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
  field
    +-isAbelianGroup : IsAbelianGroup + 0# -_
    -- FIXME: unroll definition
    *-isMonoid       : NoOrder.IsMonoid _*_ 1#
    distrib          : _*_ DistributesOver +
    zero             : Zero 0# _*_
    0<a+0<b⇒0<ab     : PreservesPositive 0# _*_

  open IsAbelianGroup +-isAbelianGroup public
    renaming
    ( assoc                  to +-assoc
    ; ∙-cong                 to +-cong
    ; ∙-congˡ                to +-congˡ
    ; ∙-congʳ                to +-congʳ
    ; ∙-invariant            to +-invariant
    ; ∙-invariantˡ           to +-invariantˡ
    ; ∙-invariantʳ           to +-invariantʳ
    ; identity               to +-identity
    ; identityˡ              to +-identityˡ
    ; identityʳ              to +-identityʳ
    ; identity²              to +-identity²
    ; inverse                to -‿inverse
    ; inverseˡ               to -‿inverseˡ
    ; inverseʳ               to -‿inverseʳ
    ; ⁻¹-cong                to -‿cong
    ; comm                   to +-comm
    ; isMagma                to +-isMagma
    ; isSemigroup            to +-isSemigroup
    ; isMonoid               to +-isMonoid
    ; isGroup                to +-isGroup
    )
    hiding (module Unordered)

  open NoOrder.IsMonoid *-isMonoid public
    using ()
    renaming
    ( assoc       to *-assoc
    ; ∙-cong      to *-cong
    ; ∙-congˡ     to *-congˡ
    ; ∙-congʳ     to *-congʳ
    ; identity    to *-identity
    ; identityˡ   to *-identityˡ
    ; identityʳ   to *-identityʳ
    ; isMagma     to *-isMagma
    ; isSemigroup to *-isSemigroup
    )

  *-identity² : (1# * 1#) ≈ 1#
  *-identity² = *-identityˡ 1#

  distribˡ : _*_ DistributesOverˡ +
  distribˡ = proj₁ distrib

  distribʳ : _*_ DistributesOverʳ +
  distribʳ = proj₂ distrib

  zeroˡ : LeftZero 0# _*_
  zeroˡ = proj₁ zero

  zeroʳ : RightZero 0# _*_
  zeroʳ = proj₂ zero

  module Unordered where
    isRing : NoOrder.IsRing + _*_ -_ 0# 1#
    isRing = record
      { +-isAbelianGroup = IsAbelianGroup.Unordered.isAbelianGroup +-isAbelianGroup
      ; *-cong           = *-cong
      ; *-assoc          = *-assoc
      ; *-identity       = *-identity
      ; distrib          = distrib
      ; zero             = zero
      }

    open NoOrder.IsRing isRing
      using (+-isMagma; +-isSemigroup; +-isMonoid; +-isGroup)

record IsCommutativeRing
         (+ * : Op₂ A) (- : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
  field
    isRing : IsRing + * - 0# 1#
    *-comm : Commutative *

  open IsRing isRing public
    hiding (module Unordered)

  module Unordered where
    isCommutativeRing : NoOrder.IsCommutativeRing + * (-) 0# 1#
    isCommutativeRing = record
      { isRing = IsRing.Unordered.isRing isRing
      ; *-comm = *-comm
      }

    open NoOrder.IsCommutativeRing isCommutativeRing public
      using (+-isMagma; +-isSemigroup; +-isMonoid; +-isGroup; isRing)

record IsDivisionRing
         (+ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A)
         (_⁻¹ : AlmostOp₁ _≈_ 0#) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
  field
    +-isAbelianGroup : IsAbelianGroup + 0# -_
    *-isAlmostGroup  : NoOrder′.IsAlmostGroup _*_ 0# 1# _⁻¹
    distrib          : _*_ DistributesOver +
    zero             : Zero 0# _*_
    0<a+0<b⇒0<ab     : PreservesPositive 0# _*_

  infixl 7 _/_
  _/_ : AlmostOp₂ _≈_ 0#
  x / y≉0 = x * (y≉0 ⁻¹)

  open IsAbelianGroup +-isAbelianGroup public
    renaming
    ( assoc                  to +-assoc
    ; ∙-cong                 to +-cong
    ; ∙-congˡ                to +-congˡ
    ; ∙-congʳ                to +-congʳ
    ; identity               to +-identity
    ; identityˡ              to +-identityˡ
    ; identityʳ              to +-identityʳ
    ; inverse                to -‿inverse
    ; inverseˡ               to -‿inverseˡ
    ; inverseʳ               to -‿inverseʳ
    ; ⁻¹-cong                to -‿cong
    ; uniqueˡ-⁻¹             to uniqueˡ‿-
    ; uniqueʳ-⁻¹             to uniqueʳ‿-
    ; comm                   to +-comm
    ; isMagma                to +-isMagma
    ; isSemigroup            to +-isSemigroup
    ; isMonoid               to +-isMonoid
    ; isGroup                to +-isGroup
    )
    hiding (module Unordered)

  open NoOrder′.IsAlmostGroup *-isAlmostGroup public
    using (⁻¹-cong; uniqueˡ-⁻¹; uniqueʳ-⁻¹)
    renaming
    ( assoc       to *-assoc
    ; ∙-cong      to *-cong
    ; ∙-congˡ     to *-congˡ
    ; ∙-congʳ     to *-congʳ
    ; identity    to *-identity
    ; identityˡ   to *-identityˡ
    ; identityʳ   to *-identityʳ
    ; inverse     to ⁻¹-inverse
    ; inverseˡ    to ⁻¹-inverseˡ
    ; inverseʳ    to ⁻¹-inverseʳ
    ; isMagma     to *-isMagma
    ; isSemigroup to *-isSemigroup
    ; isMonoid    to *-isMonoid
    )

  isRing : IsRing + _*_ -_ 0# 1#
  isRing = record
    { +-isAbelianGroup = +-isAbelianGroup
    ; *-isMonoid = *-isMonoid
    ; distrib = distrib
    ; zero = zero
    ; 0<a+0<b⇒0<ab = 0<a+0<b⇒0<ab
    }

  open IsRing isRing public
    using (distribˡ ; distribʳ ; zeroˡ ; zeroʳ)

  module Unordered where
    isDivisionRing : NoOrder′.IsDivisionRing + _*_ -_ 0# 1# _⁻¹
    isDivisionRing = record
      { +-isAbelianGroup = IsAbelianGroup.Unordered.isAbelianGroup +-isAbelianGroup
      ; *-isAlmostGroup  = *-isAlmostGroup
      ; distrib          = distrib
      ; zero             = zero
      }

    open NoOrder′.IsDivisionRing isDivisionRing
      using (+-isMagma; +-isSemigroup; +-isMonoid; +-isGroup; isRing)

record IsField
         (+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A)
         (⁻¹ : AlmostOp₁ _≈_ 0#) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where
  field
    isDivisionRing : IsDivisionRing + * -_ 0# 1# ⁻¹
    *-comm         : Commutative *

  open IsDivisionRing isDivisionRing public
    hiding (module Unordered)

  isCommutativeRing : IsCommutativeRing + * -_ 0# 1#
  isCommutativeRing = record
    { isRing = isRing
    ; *-comm = *-comm
    }

  module Unordered where
    isField : NoOrder′.IsField + * -_ 0# 1# ⁻¹
    isField = record
      { isDivisionRing = IsDivisionRing.Unordered.isDivisionRing isDivisionRing
      ; *-comm         = *-comm
      }

    open NoOrder′.IsField isField
      using
      ( +-isMagma; +-isSemigroup; +-isMonoid; +-isGroup
      ; isRing; isDivisionRing
      )