blob: 6cf25ec9ba7ce5fa224f09eaa11ffaf820fa42c6 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
{-# OPTIONS --safe --without-K #-}
module Helium.Data.Pseudocode where
open import Algebra.Core
open import Data.Bool using (Bool; if_then_else_)
open import Data.Fin hiding (_+_; cast)
import Data.Fin.Properties as Finₚ
open import Data.Nat using (ℕ; zero; suc; _+_; _^_)
import Data.Vec as Vec
open import Level using (_⊔_) renaming (suc to ℓsuc)
open import Relation.Binary using (REL; Rel; Symmetric; Transitive; Decidable)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym)
open import Relation.Nullary using (Dec; does)
open import Relation.Nullary.Decidable
private
map-False : ∀ {p q} {P : Set p} {Q : Set q} {P? : Dec P} {Q? : Dec Q} → (P → Q) → False Q? → False P?
map-False ⇒ f = fromWitnessFalse (λ x → toWitnessFalse f (⇒ x))
record RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃ : Set (ℓsuc (b₁ ⊔ b₂ ⊔ i₁ ⊔ i₂ ⊔ i₃ ⊔ r₁ ⊔ r₂ ⊔ r₃)) where
infix 9 _^ᶻ_ _^ʳ_
infix 8 _⁻¹
infix 7 _*ᶻ_ _*ʳ_
infix 6 -ᶻ_ -ʳ_
infix 5 _+ᶻ_ _+ʳ_
infix 4 _≈ᵇ_ _≟ᵇ_ _≈ᶻ_ _≟ᶻ_ _<ᶻ_ _<?ᶻ_ _≈ʳ_ _≟ʳ_ _<ʳ_ _<?ʳ_
field
-- Types
Bits : ℕ → Set b₁
ℤ : Set i₁
ℝ : Set r₁
field
-- Relations
_≈ᵇ_ : ∀ {m n} → REL (Bits m) (Bits n) b₂
_≟ᵇ_ : ∀ {m n} → Decidable (_≈ᵇ_ {m} {n})
_≈ᶻ_ : Rel ℤ i₂
_≟ᶻ_ : Decidable _≈ᶻ_
_<ᶻ_ : Rel ℤ i₃
_<?ᶻ_ : Decidable _<ᶻ_
_≈ʳ_ : Rel ℝ r₂
_≟ʳ_ : Decidable _≈ʳ_
_<ʳ_ : Rel ℝ r₃
_<?ʳ_ : Decidable _<ʳ_
-- Constants
[] : Bits 0
0b : Bits 1
1b : Bits 1
0ℤ : ℤ
1ℤ : ℤ
0ℝ : ℝ
1ℝ : ℝ
field
-- Bitstring operations
ofFin : ∀ {n} → Fin (2 ^ n) → Bits n
cast : ∀ {m n} → .(eq : m ≡ n) → Bits m → Bits n
not : ∀ {n} → Op₁ (Bits n)
_and_ : ∀ {n} → Op₂ (Bits n)
_or_ : ∀ {n} → Op₂ (Bits n)
_∶_ : ∀ {m n} → Bits m → Bits n → Bits (m + n)
sliceᵇ : ∀ {n} (i : Fin (suc n)) j → Bits n → Bits (toℕ (i - j))
updateᵇ : ∀ {n} (i : Fin (suc n)) j → Bits (toℕ (i - j)) → Op₁ (Bits n)
field
-- Arithmetic operations
⟦_⟧ : ℤ → ℝ
round : ℝ → ℤ
_+ᶻ_ : Op₂ ℤ
_+ʳ_ : Op₂ ℝ
_*ᶻ_ : Op₂ ℤ
_*ʳ_ : Op₂ ℝ
-ᶻ_ : Op₁ ℤ
-ʳ_ : Op₁ ℝ
_⁻¹ : ∀ (y : ℝ) → .{False (y ≟ʳ 0ℝ)} → ℝ
-- Convenience operations
zeros : ∀ {n} → Bits n
zeros {zero} = []
zeros {suc n} = 0b ∶ zeros
_eor_ : ∀ {n} → Op₂ (Bits n)
x eor y = (x or y) and not (x and y)
getᵇ : ∀ {n} → Fin n → Bits n → Bits 1
getᵇ i x = cast (eq i) (sliceᵇ (suc i) (inject₁ (strengthen i)) x)
where
eq : ∀ {n} (i : Fin n) → toℕ (suc i - inject₁ (strengthen i)) ≡ 1
eq zero = refl
eq (suc i) = eq i
setᵇ : ∀ {n} → Fin n → Bits 1 → Op₁ (Bits n)
setᵇ i y = updateᵇ (suc i) (inject₁ (strengthen i)) (cast (sym (eq i)) y)
where
eq : ∀ {n} (i : Fin n) → toℕ (suc i - inject₁ (strengthen i)) ≡ 1
eq zero = refl
eq (suc i) = eq i
hasBit : ∀ {n} → Fin n → Bits n → Bool
hasBit i x = does (getᵇ i x ≟ᵇ 1b)
-- Stray constant cannot live with the others, because + is not defined at that point.
2ℤ : ℤ
2ℤ = 1ℤ +ᶻ 1ℤ
_^ᶻ_ : ℤ → ℕ → ℤ
x ^ᶻ zero = 1ℤ
x ^ᶻ suc y = x *ᶻ x ^ᶻ y
_^ʳ_ : ℝ → ℕ → ℝ
x ^ʳ zero = 1ℝ
x ^ʳ suc y = x *ʳ x ^ʳ y
_<<_ : ℤ → ℕ → ℤ
x << n = x *ᶻ 2ℤ ^ᶻ n
uint : ∀ {n} → Bits n → ℤ
uint x = Vec.foldr (λ _ → ℤ) _+ᶻ_ 0ℤ (Vec.tabulate (λ i → if hasBit i x then 1ℤ << toℕ i else 0ℤ))
sint : ∀ {n} → Bits n → ℤ
sint {zero} x = 0ℤ
sint {suc n} x = uint x +ᶻ (if hasBit (fromℕ n) x then -ᶻ 1ℤ << suc n else 0ℤ)
module divmod
(≈ᶻ-trans : Transitive _≈ᶻ_)
(round∘⟦⟧ : ∀ x → x ≈ᶻ round ⟦ x ⟧)
(round-cong : ∀ {x y} → x ≈ʳ y → round x ≈ᶻ round y)
(0#-homo-round : round 0ℝ ≈ᶻ 0ℤ)
where
infix 7 _div_ _mod_
_div_ : ∀ (x y : ℤ) → .{≢0 : False (y ≟ᶻ 0ℤ)} → ℤ
(x div y) {≢0} =
let f = (λ y≈0 → ≈ᶻ-trans (round∘⟦⟧ y) (≈ᶻ-trans (round-cong y≈0) 0#-homo-round)) in
round (⟦ x ⟧ *ʳ (⟦ y ⟧ ⁻¹) {map-False f ≢0})
_mod_ : ∀ (x y : ℤ) → .{≢0 : False (y ≟ᶻ 0ℤ)} → ℤ
(x mod y) {≢0} = x +ᶻ -ᶻ y *ᶻ (x div y) {≢0}
module 2^n≢0
(≈ᶻ-trans : Transitive _≈ᶻ_)
(round∘⟦⟧ : ∀ x → x ≈ᶻ round ⟦ x ⟧)
(round-cong : ∀ {x y} → x ≈ʳ y → round x ≈ᶻ round y)
(0#-homo-round : round 0ℝ ≈ᶻ 0ℤ)
(2^n≢0 : ∀ n → False (2ℤ ^ᶻ n ≟ᶻ 0ℤ))
where
open divmod ≈ᶻ-trans round∘⟦⟧ round-cong 0#-homo-round
_>>_ : ℤ → ℕ → ℤ
x >> n = (x div (2ℤ ^ᶻ n)) {2^n≢0 n}
getᶻ : ℕ → ℤ → Bits 1
getᶻ i x = if (does ((x mod (2ℤ ^ᶻ suc i)) {2^n≢0 (suc i)} <?ᶻ 2ℤ ^ᶻ i)) then 0b else 1b
module sliceᶻ
(≈ᶻ-trans : Transitive _≈ᶻ_)
(round∘⟦⟧ : ∀ x → x ≈ᶻ round ⟦ x ⟧)
(round-cong : ∀ {x y} → x ≈ʳ y → round x ≈ᶻ round y)
(0#-homo-round : round 0ℝ ≈ᶻ 0ℤ)
(2^n≢0 : ∀ n → False (2ℤ ^ᶻ n ≟ᶻ 0ℤ))
(*ᶻ-identityʳ : ∀ x → x *ᶻ 1ℤ ≈ᶻ x)
where
infix 5 _+ᵇ_
open divmod ≈ᶻ-trans round∘⟦⟧ round-cong 0#-homo-round
open 2^n≢0 ≈ᶻ-trans round∘⟦⟧ round-cong 0#-homo-round 2^n≢0
sliceᶻ : ∀ n i → ℤ → Bits (n ℕ-ℕ i)
sliceᶻ zero zero z = []
sliceᶻ (suc n) zero z = getᶻ n z ∶ sliceᶻ n zero z
sliceᶻ (suc n) (suc i) z = sliceᶻ n i ((z div 2ℤ) {2≢0})
where
2≢0 = map-False (≈ᶻ-trans (*ᶻ-identityʳ 2ℤ)) (2^n≢0 1)
_+ᵇ_ : ∀ {n} → Op₂ (Bits n)
x +ᵇ y = sliceᶻ _ zero (uint x +ᶻ uint y)
|