blob: 523150d53f89415832b7c8c06c601251b87a4778 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
------------------------------------------------------------------------
-- Agda Helium
--
-- Definition of types and operations used by the Armv8-M pseudocode.
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module Helium.Data.Pseudocode.Algebra where
open import Algebra.Core
import Algebra.Definitions.RawSemiring as RS
open import Data.Bool.Base using (Bool; if_then_else_)
open import Data.Empty using (⊥-elim)
open import Data.Fin.Base as Fin hiding (cast)
import Data.Fin.Properties as Fₚ
import Data.Fin.Induction as Induction
open import Data.Nat.Base using (ℕ; zero; suc)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]′)
open import Data.Vec.Functional
open import Data.Vec.Functional.Relation.Binary.Pointwise using (Pointwise)
import Data.Vec.Functional.Relation.Binary.Pointwise.Properties as Pwₚ
open import Function using (_$_; _∘′_; id)
open import Helium.Algebra.Ordered.StrictTotal.Bundles
open import Helium.Algebra.Decidable.Bundles
using (BooleanAlgebra; RawBooleanAlgebra)
import Helium.Algebra.Decidable.Construct.Pointwise as Pw
open import Helium.Algebra.Morphism.Structures
open import Level using (_⊔_) renaming (suc to ℓsuc)
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Definitions
open import Relation.Binary.PropositionalEquality as P using (_≡_)
import Relation.Binary.Reasoning.StrictPartialOrder as Reasoning
open import Relation.Binary.Structures using (IsStrictTotalOrder)
open import Relation.Nullary using (does; yes; no)
open import Relation.Nullary.Decidable.Core
using (False; toWitnessFalse; fromWitnessFalse)
record RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃ : Set (ℓsuc (b₁ ⊔ b₂ ⊔ i₁ ⊔ i₂ ⊔ i₃ ⊔ r₁ ⊔ r₂ ⊔ r₃)) where
field
bitRawBooleanAlgebra : RawBooleanAlgebra b₁ b₂
integerRawRing : RawRing i₁ i₂ i₃
realRawField : RawField r₁ r₂ r₃
bitsRawBooleanAlgebra : ℕ → RawBooleanAlgebra b₁ b₂
bitsRawBooleanAlgebra = Pw.rawBooleanAlgebra bitRawBooleanAlgebra
module 𝔹 = RawBooleanAlgebra bitRawBooleanAlgebra
renaming (Carrier to Bit; ⊤ to 1𝔹; ⊥ to 0𝔹)
module Bits {n} = RawBooleanAlgebra (bitsRawBooleanAlgebra n)
renaming (⊤ to ones; ⊥ to zeros)
module ℤ = RawRing integerRawRing renaming (Carrier to ℤ; 1# to 1ℤ; 0# to 0ℤ)
module ℝ = RawField realRawField renaming (Carrier to ℝ; 1# to 1ℝ; 0# to 0ℝ)
module ℤ′ = RS ℤ.Unordered.rawSemiring
module ℝ′ = RS ℝ.Unordered.rawSemiring
Bits : ℕ → Set b₁
Bits n = Bits.Carrier {n}
open 𝔹 public using (Bit; 1𝔹; 0𝔹)
open Bits public using (ones; zeros)
open ℤ public using (ℤ; 1ℤ; 0ℤ)
open ℝ public using (ℝ; 1ℝ; 0ℝ)
infix 4 _≟ᶻ_ _<ᶻ?_ _≟ʳ_ _<ʳ?_ _≟ᵇ₁_ _≟ᵇ_
field
_≟ᶻ_ : Decidable ℤ._≈_
_<ᶻ?_ : Decidable ℤ._<_
_≟ʳ_ : Decidable ℝ._≈_
_<ʳ?_ : Decidable ℝ._<_
_≟ᵇ₁_ : Decidable 𝔹._≈_
_≟ᵇ_ : ∀ {n} → Decidable (Bits._≈_ {n})
_≟ᵇ_ = Pwₚ.decidable _≟ᵇ₁_
field
_/1 : ℤ → ℝ
⌊_⌋ : ℝ → ℤ
record Pseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃ :
Set (ℓsuc (b₁ ⊔ b₂ ⊔ i₁ ⊔ i₂ ⊔ i₃ ⊔ r₁ ⊔ r₂ ⊔ r₃)) where
field
bitBooleanAlgebra : BooleanAlgebra b₁ b₂
integerRing : CommutativeRing i₁ i₂ i₃
realField : Field r₁ r₂ r₃
bitsBooleanAlgebra : ℕ → BooleanAlgebra b₁ b₂
bitsBooleanAlgebra = Pw.booleanAlgebra bitBooleanAlgebra
module 𝔹 = BooleanAlgebra bitBooleanAlgebra
renaming (Carrier to Bit; ⊤ to 1𝔹; ⊥ to 0𝔹)
module Bits {n} = BooleanAlgebra (bitsBooleanAlgebra n)
renaming (⊤ to ones; ⊥ to zeros)
module ℤ = CommutativeRing integerRing
renaming (Carrier to ℤ; 1# to 1ℤ; 0# to 0ℤ)
module ℝ = Field realField
renaming (Carrier to ℝ; 1# to 1ℝ; 0# to 0ℝ)
Bits : ℕ → Set b₁
Bits n = Bits.Carrier {n}
open 𝔹 public using (Bit; 1𝔹; 0𝔹)
open Bits public using (ones; zeros)
open ℤ public using (ℤ; 1ℤ; 0ℤ)
open ℝ public using (ℝ; 1ℝ; 0ℝ)
module ℤ-Reasoning = Reasoning ℤ.strictPartialOrder
module ℝ-Reasoning = Reasoning ℝ.strictPartialOrder
field
integerDiscrete : ∀ x y → y ℤ.≤ x ⊎ x ℤ.+ 1ℤ ℤ.≤ y
1≉0 : 1ℤ ℤ.≉ 0ℤ
_/1 : ℤ → ℝ
⌊_⌋ : ℝ → ℤ
/1-isHomo : IsRingHomomorphism ℤ.Unordered.rawRing ℝ.Unordered.rawRing _/1
⌊⌋-isHomo : IsRingHomomorphism ℝ.Unordered.rawRing ℤ.Unordered.rawRing ⌊_⌋
/1-mono-< : ∀ x y → x ℤ.< y → x /1 ℝ.< y /1
⌊⌋-mono-≤ : ∀ x y → x ℝ.≤ y → ⌊ x ⌋ ℤ.≤ ⌊ y ⌋
⌊⌋-floor : ∀ x y → x ℝ.< y /1 → ⌊ x ⌋ ℤ.< y
⌊⌋∘/1≗id : ∀ x → ⌊ x /1 ⌋ ℤ.≈ x
module /1 = IsRingHomomorphism /1-isHomo renaming (⟦⟧-cong to cong)
module ⌊⌋ = IsRingHomomorphism ⌊⌋-isHomo renaming (⟦⟧-cong to cong)
bitRawBooleanAlgebra : RawBooleanAlgebra b₁ b₂
bitRawBooleanAlgebra = record
{ _≈_ = _≈_
; _∨_ = _∨_
; _∧_ = _∧_
; ¬_ = ¬_
; ⊤ = ⊤
; ⊥ = ⊥
}
where open BooleanAlgebra bitBooleanAlgebra
rawPseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃
rawPseudocode = record
{ bitRawBooleanAlgebra = bitRawBooleanAlgebra
; integerRawRing = ℤ.rawRing
; realRawField = ℝ.rawField
; _≟ᶻ_ = ℤ._≟_
; _<ᶻ?_ = ℤ._<?_
; _≟ʳ_ = ℝ._≟_
; _<ʳ?_ = ℝ._<?_
; _≟ᵇ₁_ = 𝔹._≟_
; _/1 = _/1
; ⌊_⌋ = ⌊_⌋
}
open RawPseudocode rawPseudocode using (module ℤ′; module ℝ′) public
|