1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
------------------------------------------------------------------------
-- Agda Helium
--
-- Definition of the Armv8-M pseudocode.
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module Helium.Data.Pseudocode.Core where
open import Data.Bool using (Bool; true; false)
open import Data.Fin as Fin using (Fin)
open import Data.Fin.Patterns
open import Data.Nat as ℕ using (ℕ; zero; suc)
open import Data.Nat.Properties using (+-comm)
open import Data.Product using (∃; _,_; proj₂; uncurry)
open import Data.Sum using ([_,_]′; inj₁; inj₂)
open import Data.Vec using (Vec; []; _∷_; lookup; map)
open import Data.Vec.Relation.Unary.All using (All; []; _∷_; reduce)
open import Data.Vec.Relation.Unary.Any using (Any; here; there)
open import Function as F using (_∘_; _∘′_; _∋_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary.Decidable.Core using (True; False; toWitness; fromWitness; map′)
open import Relation.Nullary.Product using (_×-dec_)
open import Relation.Nullary.Sum using (_⊎-dec_)
open import Relation.Unary using (Decidable)
--- The set of types and boolean properties of them
data Type : Set where
bool : Type
int : Type
fin : (n : ℕ) → Type
real : Type
bit : Type
bits : (n : ℕ) → Type
tuple : ∀ n → Vec Type n → Type
array : Type → (n : ℕ) → Type
data HasEquality : Type → Set where
bool : HasEquality bool
int : HasEquality int
fin : ∀ {n} → HasEquality (fin n)
real : HasEquality real
bit : HasEquality bit
bits : ∀ {n} → HasEquality (bits n)
hasEquality? : Decidable HasEquality
hasEquality? bool = yes bool
hasEquality? int = yes int
hasEquality? (fin n) = yes fin
hasEquality? real = yes real
hasEquality? bit = yes bit
hasEquality? (bits n) = yes bits
hasEquality? (tuple n x) = no (λ ())
hasEquality? (array t n) = no (λ ())
data IsNumeric : Type → Set where
int : IsNumeric int
real : IsNumeric real
isNumeric? : Decidable IsNumeric
isNumeric? bool = no (λ ())
isNumeric? int = yes int
isNumeric? (fin n) = no (λ ())
isNumeric? real = yes real
isNumeric? bit = no (λ ())
isNumeric? (bits n) = no (λ ())
isNumeric? (tuple n x) = no (λ ())
isNumeric? (array t n) = no (λ ())
combineNumeric : ∀ t₁ t₂ → {isNumeric₁ : True (isNumeric? t₁)} → {isNumeric₂ : True (isNumeric? t₂)} → Type
combineNumeric int int = int
combineNumeric int real = real
combineNumeric real _ = real
data Sliced : Set where
bits : Sliced
array : Type → Sliced
asType : Sliced → ℕ → Type
asType bits n = bits n
asType (array t) n = array t n
sliced? : ∀ t → Dec (∃ λ t′ → ∃ λ n → asType t′ n ≡ t)
sliced? bool = no (λ { (bits , ()) ; (array _ , ()) })
sliced? int = no (λ { (bits , ()) ; (array _ , ()) })
sliced? (fin n) = no (λ { (bits , ()) ; (array _ , ()) })
sliced? real = no (λ { (bits , ()) ; (array _ , ()) })
sliced? bit = no (λ { (bits , ()) ; (array _ , ()) })
sliced? (bits n) = yes (bits , n , refl)
sliced? (tuple n x) = no (λ { (bits , ()) ; (array _ , ()) })
sliced? (array t n) = yes (array t , n , refl)
elemType : Sliced → Type
elemType bits = bit
elemType (array t) = t
--- Literals
data Literal : Type → Set where
_′b : Bool → Literal bool
_′i : ℕ → Literal int
_′f : ∀ {n} → Fin n → Literal (fin n)
_′r : ℕ → Literal real
_′x : Bool → Literal bit
_′xs : ∀ {n} → Vec Bool n → Literal (bits n)
_′a : ∀ {n t} → Literal t → Literal (array t n)
--- Expressions, references, statements, functions and procedures
module Code {o} (Σ : Vec Type o) where
data Expression {n} (Γ : Vec Type n) : Type → Set
data CanAssign {n Γ} : ∀ {t} → Expression {n} Γ t → Set
canAssign? : ∀ {n Γ t} → Decidable (CanAssign {n} {Γ} {t})
data ReferencesState {n Γ} : ∀ {t} → Expression {n} Γ t → Set
referencesState? : ∀ {n Γ t} → Decidable (ReferencesState {n} {Γ} {t})
data Statement {n} (Γ : Vec Type n) : Set
data ChangesState {n Γ} : Statement {n} Γ → Set
changesState? : ∀ {n Γ} → Decidable (ChangesState {n} {Γ})
data Function {n} (Γ : Vec Type n) (ret : Type) : Set
data Procedure {n} (Γ : Vec Type n) : Set
infix 8 -_
infixr 7 _^_
infixl 6 _*_ _and_ _>>_
-- infixl 6 _/_
infixl 5 _+_ _or_ _&&_ _||_
infix 4 _≟_ _<?_
data Expression {n} Γ where
lit : ∀ {t} → Literal t → Expression Γ t
state : ∀ i → Expression Γ (lookup Σ i)
var : ∀ i → Expression Γ (lookup Γ i)
abort : ∀ {t} → Expression Γ (fin 0) → Expression Γ t
_≟_ : ∀ {t} {hasEquality : True (hasEquality? t)} → Expression Γ t → Expression Γ t → Expression Γ bool
_<?_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → Expression Γ t → Expression Γ bool
inv : Expression Γ bool → Expression Γ bool
_&&_ : Expression Γ bool → Expression Γ bool → Expression Γ bool
_||_ : Expression Γ bool → Expression Γ bool → Expression Γ bool
not : ∀ {m} → Expression Γ (bits m) → Expression Γ (bits m)
_and_ : ∀ {m} → Expression Γ (bits m) → Expression Γ (bits m) → Expression Γ (bits m)
_or_ : ∀ {m} → Expression Γ (bits m) → Expression Γ (bits m) → Expression Γ (bits m)
[_] : ∀ {t} → Expression Γ (elemType t) → Expression Γ (asType t 1)
unbox : ∀ {t} → Expression Γ (asType t 1) → Expression Γ (elemType t)
splice : ∀ {m n t} → Expression Γ (asType t m) → Expression Γ (asType t n) → Expression Γ (fin (suc n)) → Expression Γ (asType t (n ℕ.+ m))
cut : ∀ {m n t} → Expression Γ (asType t (n ℕ.+ m)) → Expression Γ (fin (suc n)) → Expression Γ (tuple 2 (asType t m ∷ asType t n ∷ []))
cast : ∀ {i j t} → .(eq : i ≡ j) → Expression Γ (asType t i) → Expression Γ (asType t j)
-_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → Expression Γ t
_+_ : ∀ {t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ {isNumeric₁} {isNumeric₂})
_*_ : ∀ {t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ {isNumeric₁} {isNumeric₂})
-- _/_ : Expression Γ real → Expression Γ real → Expression Γ real
_^_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → ℕ → Expression Γ t
_>>_ : Expression Γ int → ℕ → Expression Γ int
rnd : Expression Γ real → Expression Γ int
fin : ∀ {k ms n} → (All (Fin) ms → Fin n) → Expression Γ (tuple k (map fin ms)) → Expression Γ (fin n)
asInt : ∀ {m} → Expression Γ (fin m) → Expression Γ int
nil : Expression Γ (tuple 0 [])
cons : ∀ {m t ts} → Expression Γ t → Expression Γ (tuple m ts) → Expression Γ (tuple (suc m) (t ∷ ts))
head : ∀ {m t ts} → Expression Γ (tuple (suc m) (t ∷ ts)) → Expression Γ t
tail : ∀ {m t ts} → Expression Γ (tuple (suc m) (t ∷ ts)) → Expression Γ (tuple m ts)
call : ∀ {t m Δ} → Function Δ t → All (Expression Γ) {m} Δ → Expression Γ t
if_then_else_ : ∀ {t} → Expression Γ bool → Expression Γ t → Expression Γ t → Expression Γ t
data CanAssign {n} {Γ} where
state : ∀ i → CanAssign (state i)
var : ∀ i → CanAssign (var i)
abort : ∀ {t} e → CanAssign (abort {t = t} e)
[_] : ∀ {t e} → CanAssign e → CanAssign ([_] {t = t} e)
unbox : ∀ {t e} → CanAssign e → CanAssign (unbox {t = t} e)
splice : ∀ {m n t e₁ e₂} → CanAssign e₁ → CanAssign e₂ → ∀ e₃ → CanAssign (splice {m = m} {n} {t} e₁ e₂ e₃)
cut : ∀ {m n t e₁} → CanAssign e₁ → ∀ e₂ → CanAssign (cut {m = m} {n} {t} e₁ e₂)
cast : ∀ {i j t e} .(eq : i ≡ j) → CanAssign e → CanAssign (cast {t = t} eq e)
nil : CanAssign nil
cons : ∀ {m t ts e₁ e₂} → CanAssign e₁ → CanAssign e₂ → CanAssign (cons {m = m} {t} {ts} e₁ e₂)
head : ∀ {m t ts e} → CanAssign e → CanAssign (head {m = m} {t} {ts} e)
tail : ∀ {m t ts e} → CanAssign e → CanAssign (tail {m = m} {t} {ts} e)
canAssign? (lit x) = no λ ()
canAssign? (state i) = yes (state i)
canAssign? (var i) = yes (var i)
canAssign? (abort e) = yes (abort e)
canAssign? (e ≟ e₁) = no λ ()
canAssign? (e <? e₁) = no λ ()
canAssign? (inv e) = no λ ()
canAssign? (e && e₁) = no λ ()
canAssign? (e || e₁) = no λ ()
canAssign? (not e) = no λ ()
canAssign? (e and e₁) = no λ ()
canAssign? (e or e₁) = no λ ()
canAssign? [ e ] = map′ [_] (λ { [ e ] → e }) (canAssign? e)
canAssign? (unbox e) = map′ unbox (λ { (unbox e) → e }) (canAssign? e)
canAssign? (splice e e₁ e₂) = map′ (λ (e , e₁) → splice e e₁ e₂) (λ { (splice e e₁ _) → e , e₁ }) (canAssign? e ×-dec canAssign? e₁)
canAssign? (cut e e₁) = map′ (λ e → cut e e₁) (λ { (cut e e₁) → e }) (canAssign? e)
canAssign? (cast eq e) = map′ (cast eq) (λ { (cast eq e) → e }) (canAssign? e)
canAssign? (- e) = no λ ()
canAssign? (e + e₁) = no λ ()
canAssign? (e * e₁) = no λ ()
-- canAssign? (e / e₁) = no λ ()
canAssign? (e ^ e₁) = no λ ()
canAssign? (e >> e₁) = no λ ()
canAssign? (rnd e) = no λ ()
canAssign? (fin x e) = no λ ()
canAssign? (asInt e) = no λ ()
canAssign? nil = yes nil
canAssign? (cons e e₁) = map′ (uncurry cons) (λ { (cons e e₁) → e , e₁ }) (canAssign? e ×-dec canAssign? e₁)
canAssign? (head e) = map′ head (λ { (head e) → e }) (canAssign? e)
canAssign? (tail e) = map′ tail (λ { (tail e) → e }) (canAssign? e)
canAssign? (call x e) = no λ ()
canAssign? (if e then e₁ else e₂) = no λ ()
data ReferencesState where
state : ∀ i → ReferencesState (state i)
[_] : ∀ {t e} → ReferencesState e → ReferencesState ([_] {t = t} e)
unbox : ∀ {t e} → ReferencesState e → ReferencesState (unbox {t = t} e)
spliceˡ : ∀ {m n t e} → ReferencesState e → ∀ e₁ e₂ → ReferencesState (splice {m = m} {n} {t} e e₁ e₂)
spliceʳ : ∀ {m n t} e {e₁} → ReferencesState e₁ → ∀ e₂ → ReferencesState (splice {m = m} {n} {t} e e₁ e₂)
cut : ∀ {m n t e} → ReferencesState e → ∀ e₁ → ReferencesState (cut {m = m} {n} {t} e e₁)
cast : ∀ {i j t} .(eq : i ≡ j) {e} → ReferencesState e → ReferencesState (cast {t = t} eq e)
consˡ : ∀ {m t ts e} → ReferencesState e → ∀ e₁ → ReferencesState (cons {m = m} {t} {ts} e e₁)
consʳ : ∀ {m t ts} e {e₁} → ReferencesState e₁ → ReferencesState (cons {m = m} {t} {ts} e e₁)
head : ∀ {m t ts e} → ReferencesState e → ReferencesState (head {m = m} {t} {ts} e)
tail : ∀ {m t ts e} → ReferencesState e → ReferencesState (tail {m = m} {t} {ts} e)
referencesState? (lit x) = no λ ()
referencesState? (state i) = yes (state i)
referencesState? (var i) = no λ ()
referencesState? (abort e) = no λ ()
referencesState? (e ≟ e₁) = no λ ()
referencesState? (e <? e₁) = no λ ()
referencesState? (inv e) = no λ ()
referencesState? (e && e₁) = no λ ()
referencesState? (e || e₁) = no λ ()
referencesState? (not e) = no λ ()
referencesState? (e and e₁) = no λ ()
referencesState? (e or e₁) = no λ ()
referencesState? [ e ] = map′ [_] (λ { [ e ] → e }) (referencesState? e)
referencesState? (unbox e) = map′ unbox (λ { (unbox e) → e }) (referencesState? e)
referencesState? (splice e e₁ e₂) = map′ [ (λ e → spliceˡ e e₁ e₂) , (λ e₁ → spliceʳ e e₁ e₂) ]′ (λ { (spliceˡ e e₁ e₂) → inj₁ e ; (spliceʳ e e₁ e₂) → inj₂ e₁ }) (referencesState? e ⊎-dec referencesState? e₁)
referencesState? (cut e e₁) = map′ (λ e → cut e e₁) (λ { (cut e e₁) → e }) (referencesState? e)
referencesState? (cast eq e) = map′ (cast eq) (λ { (cast eq e) → e }) (referencesState? e)
referencesState? (- e) = no λ ()
referencesState? (e + e₁) = no λ ()
referencesState? (e * e₁) = no λ ()
referencesState? (e ^ x) = no λ ()
referencesState? (e >> x) = no λ ()
referencesState? (rnd e) = no λ ()
referencesState? (fin x e) = no λ ()
referencesState? (asInt e) = no λ ()
referencesState? nil = no λ ()
referencesState? (cons e e₁) = map′ [ (λ e → consˡ e e₁) , (λ e₁ → consʳ e e₁) ]′ (λ { (consˡ e e₁) → inj₁ e ; (consʳ e e₁) → inj₂ e₁ }) (referencesState? e ⊎-dec referencesState? e₁)
referencesState? (head e) = map′ head (λ { (head e) → e }) (referencesState? e)
referencesState? (tail e) = map′ tail (λ { (tail e) → e }) (referencesState? e)
referencesState? (call f es) = no λ ()
referencesState? (if e then e₁ else e₂) = no λ ()
infix 4 _≔_
infixl 2 if_then_else_ if_then_
infixl 1 _∙_ _∙return_
infix 1 _∙end
data Statement Γ where
_∙_ : Statement Γ → Statement Γ → Statement Γ
skip : Statement Γ
_≔_ : ∀ {t} → (ref : Expression Γ t) → {canAssign : True (canAssign? ref)} → Expression Γ t → Statement Γ
declare : ∀ {t} → Expression Γ t → Statement (t ∷ Γ) → Statement Γ
invoke : ∀ {m Δ} → Procedure Δ → All (Expression Γ) {m} Δ → Statement Γ
if_then_else_ : Expression Γ bool → Statement Γ → Statement Γ → Statement Γ
if_then_ : Expression Γ bool → Statement Γ → Statement Γ
for : ∀ m → Statement (fin m ∷ Γ) → Statement Γ
data ChangesState where
_∙ˡ_ : ∀ {s} → ChangesState s → ∀ s₁ → ChangesState (s ∙ s₁)
_∙ʳ_ : ∀ s {s₁} → ChangesState s₁ → ChangesState (s ∙ s₁)
_≔_ : ∀ {t} ref {canAssign : True (canAssign? ref)} {refsState : True (referencesState? ref)} e₂ → ChangesState (_≔_ {t = t} ref {canAssign} e₂)
declare : ∀ {t} e {s} → ChangesState s → ChangesState (declare {t = t} e s)
invoke : ∀ {m Δ} p es → ChangesState (invoke {m = m} {Δ} p es)
if_then_ : ∀ e {s} → ChangesState s → ChangesState (if e then s)
if_then′_else_ : ∀ e {s} → ChangesState s → ∀ s₁ → ChangesState (if e then s else s₁)
if_then_else′_ : ∀ e s {s₁} → ChangesState s₁ → ChangesState (if e then s else s₁)
for : ∀ m {s} → ChangesState s → ChangesState (for m s)
changesState? (s ∙ s₁) = map′ [ _∙ˡ s₁ , s ∙ʳ_ ]′ (λ { (s ∙ˡ s₁) → inj₁ s ; (s ∙ʳ s₁) → inj₂ s₁ }) (changesState? s ⊎-dec changesState? s₁)
changesState? skip = no λ ()
changesState? (_≔_ ref e) = map′ (λ refsState → _≔_ ref {refsState = fromWitness refsState} e) (λ { (_≔_ ref {refsState = refsState} e) → toWitness refsState }) (referencesState? ref)
changesState? (declare e s) = map′ (declare e) (λ { (declare e s) → s }) (changesState? s)
changesState? (invoke p e) = yes (invoke p e)
changesState? (if e then s) = map′ (if e then_) (λ { (if e then s) → s }) (changesState? s)
changesState? (if e then s else s₁) = map′ [ if e then′_else s₁ , if e then s else′_ ]′ (λ { (if e then′ s else s₁) → inj₁ s ; (if e then s else′ s₁) → inj₂ s₁ }) (changesState? s ⊎-dec changesState? s₁)
changesState? (for m s) = map′ (for m) (λ { (for m s) → s }) (changesState? s)
data Function Γ ret where
_∙return_ : (s : Statement Γ) → {False (changesState? s)} → Expression Γ ret → Function Γ ret
declare : ∀ {t} → Expression Γ t → Function (t ∷ Γ) ret → Function Γ ret
data Procedure Γ where
_∙end : Statement Γ → Procedure Γ
infixl 6 _<<_
infixl 5 _-_ _∶_
tup : ∀ {n Γ m ts} → All (Expression {n} Γ) ts → Expression Γ (tuple m ts)
tup [] = nil
tup (e ∷ es) = cons e (tup es)
_∶_ : ∀ {n Γ i j t} → Expression {n} Γ (asType t j) → Expression Γ (asType t i) → Expression Γ (asType t (i ℕ.+ j))
e₁ ∶ e₂ = splice e₁ e₂ (lit (Fin.fromℕ _ ′f))
slice : ∀ {n Γ i j t} → Expression {n} Γ (asType t (i ℕ.+ j)) → Expression Γ (fin (suc i)) → Expression Γ (asType t j)
slice e₁ e₂ = head (cut e₁ e₂)
slice′ : ∀ {n Γ i j t} → Expression {n} Γ (asType t (i ℕ.+ j)) → Expression Γ (fin (suc j)) → Expression Γ (asType t i)
slice′ {i = i} e₁ e₂ = slice (cast (+-comm i _) e₁) e₂
_-_ : ∀ {n Γ t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression {n} Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ {isNumeric₁} {isNumeric₂})
_-_ {isNumeric₂ = isNumeric₂} x y = x + (-_ {isNumeric = isNumeric₂} y)
_<<_ : ∀ {n Γ} → Expression {n} Γ int → ℕ → Expression Γ int
x << n = rnd (x * lit (2 ′r) ^ n)
get : ∀ {n Γ} → ℕ → Expression {n} Γ int → Expression Γ bit
get i x = if x - x >> suc i << suc i <? lit (2 ′i) ^ i then lit (false ′x) else lit (true ′x)
uint : ∀ {n Γ m} → Expression {n} Γ (bits m) → Expression Γ int
uint {m = zero} x = lit (0 ′i)
uint {m = suc m} x =
lit (2 ′i) * uint {m = m} (slice x (lit (1F ′f))) +
( if slice′ x (lit (0F ′f)) ≟ lit ((true ∷ []) ′xs)
then lit (1 ′i)
else lit (0 ′i))
sint : ∀ {n Γ m} → Expression {n} Γ (bits m) → Expression Γ int
sint {m = zero} x = lit (0 ′i)
sint {m = suc zero} x = if x ≟ lit ((true ∷ []) ′xs) then - lit (1 ′i) else lit (0 ′i)
sint {m = suc (suc m)} x =
lit (2 ′i) * sint (slice {i = 1} x (lit (1F ′f))) +
( if slice′ x (lit (0F ′f)) ≟ lit ((true ∷ []) ′xs)
then lit (1 ′i)
else lit (0 ′i))
|