summaryrefslogtreecommitdiff
path: root/src/Helium/Semantics/Axiomatic/Assertion.agda
blob: 505abd898c0c7821fa99f7ae55129edefe69bb79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
------------------------------------------------------------------------
-- Agda Helium
--
-- Definition of assertions used in correctness triples
------------------------------------------------------------------------

{-# OPTIONS --safe --without-K #-}

open import Helium.Data.Pseudocode.Algebra using (RawPseudocode)

module Helium.Semantics.Axiomatic.Assertion
  {b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃}
  (rawPseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃)
  where

open RawPseudocode rawPseudocode

import Data.Bool as Bool
open import Data.Empty.Polymorphic using (⊥)
open import Data.Fin using (suc)
open import Data.Fin.Patterns
open import Data.Nat using (ℕ; suc)
import Data.Nat.Properties as ℕₚ
open import Data.Product using (∃; _×_; _,_; uncurry)
open import Data.Sum using (_⊎_)
open import Data.Unit.Polymorphic using (⊤)
open import Data.Vec as Vec using (Vec; []; _∷_; _++_; insert)
open import Data.Vec.Relation.Unary.All using (All; map)
import Data.Vec.Recursive as Vecᵣ
open import Function
open import Helium.Data.Pseudocode.Core
open import Helium.Semantics.Core rawPseudocode
open import Helium.Semantics.Axiomatic.Term rawPseudocode as Term using (Term)
open import Level as L using (Lift; lift; lower)

private
  variable
    t t′     : Type
    i j k m n o    : ℕ
    Γ Δ Σ ts : Vec Type m

  ℓ = b₁ L.⊔ i₁ L.⊔ r₁

open Term.Term

data Assertion (Σ : Vec Type o) (Γ : Vec Type n) (Δ : Vec Type m) : Set (L.suc ℓ) where
  all    : Assertion Σ Γ (t ∷ Δ) → Assertion Σ Γ Δ
  some   : Assertion Σ Γ (t ∷ Δ) → Assertion Σ Γ Δ
  pred   : Term Σ Γ Δ bool → Assertion Σ Γ Δ
  comb   : (Set ℓ Vecᵣ.^ k → Set ℓ) → Vec (Assertion Σ Γ Δ) k → Assertion Σ Γ Δ

module Construct where
  infixl 6 _∧_
  infixl 5 _∨_

  true : Assertion Σ Γ Δ
  true = comb (λ _ → ⊤) []

  false : Assertion Σ Γ Δ
  false = comb (λ _ → ⊥) []

  _∧_ : Assertion Σ Γ Δ → Assertion Σ Γ Δ → Assertion Σ Γ Δ
  P ∧ Q = comb (uncurry _×_) (P ∷ Q ∷ [])

  _∨_ : Assertion Σ Γ Δ → Assertion Σ Γ Δ → Assertion Σ Γ Δ
  P ∨ Q = comb (uncurry _⊎_) (P ∷ Q ∷ [])

  equal : Term Σ Γ Δ t → Term Σ Γ Δ t → Assertion Σ Γ Δ
  equal {t = bool}                x y = pred (x ≟ y)
  equal {t = int}                 x y = pred (x ≟ y)
  equal {t = fin n}               x y = pred (x ≟ y)
  equal {t = real}                x y = pred (x ≟ y)
  equal {t = bit}                 x y = pred (x ≟ y)
  equal {t = tuple []}            x y = true
  equal {t = tuple (t ∷ [])}      x y = equal (head x) (head y)
  equal {t = tuple (t ∷ t₁ ∷ ts)} x y = equal (head x) (head y) ∧ equal (tail x) (tail y)
  equal {t = array t 0}           x y = true
  equal {t = array t (suc n)}     x y = all (equal (index x) (index y))
    where
    index : Term Σ Γ Δ (array t (suc n)) → Term Σ Γ (fin (suc n) ∷ Δ) t
    index t = unbox (slice (cast (ℕₚ.+-comm 1 _) (Term.Meta.weaken 0F t)) (meta 0F))

open Construct public

module Var where
  weaken : ∀ i → Assertion Σ Γ Δ → Assertion Σ (insert Γ i t) Δ
  weaken i (all P)     = all (weaken i P)
  weaken i (some P)    = some (weaken i P)
  weaken i (pred p)    = pred (Term.Var.weaken i p)
  weaken i (comb f Ps) = comb f (helper i Ps)
    where
    helper : ∀ i → Vec (Assertion Σ Γ Δ) k → Vec (Assertion Σ (insert Γ i t) Δ) k
    helper i []       = []
    helper i (P ∷ Ps) = weaken i P ∷ helper i Ps

  weakenAll : Assertion Σ [] Δ → Assertion Σ Γ Δ
  weakenAll (all P)     = all (weakenAll P)
  weakenAll (some P)    = some (weakenAll P)
  weakenAll (pred p)    = pred (Term.Var.weakenAll p)
  weakenAll (comb f Ps) = comb f (helper Ps)
    where
    helper : Vec (Assertion Σ [] Δ) k → Vec (Assertion Σ Γ Δ) k
    helper []       = []
    helper (P ∷ Ps) = weakenAll P ∷ helper Ps

  inject : ∀ (ts : Vec Type n) → Assertion Σ Γ Δ → Assertion Σ (Γ ++ ts) Δ
  inject ts (all P)     = all (inject ts P)
  inject ts (some P)    = some (inject ts P)
  inject ts (pred p)    = pred (Term.Var.inject ts p)
  inject ts (comb f Ps) = comb f (helper ts Ps)
    where
    helper : ∀ (ts : Vec Type n) → Vec (Assertion Σ Γ Δ) k → Vec (Assertion Σ (Γ ++ ts) Δ) k
    helper ts []       = []
    helper ts (P ∷ Ps) = inject ts P ∷ helper ts Ps

  raise : ∀ (ts : Vec Type n) → Assertion Σ Γ Δ → Assertion Σ (ts ++ Γ) Δ
  raise ts (all P)     = all (raise ts P)
  raise ts (some P)    = some (raise ts P)
  raise ts (pred p)    = pred (Term.Var.raise ts p)
  raise ts (comb f Ps) = comb f (helper ts Ps)
    where
    helper : ∀ (ts : Vec Type n) → Vec (Assertion Σ Γ Δ) k → Vec (Assertion Σ (ts ++ Γ) Δ) k
    helper ts []       = []
    helper ts (P ∷ Ps) = raise ts P ∷ helper ts Ps

  elim : ∀ i → Assertion Σ (insert Γ i t) Δ → Term Σ Γ Δ t → Assertion Σ Γ Δ
  elim i (all P)     e = all (elim i P (Term.Meta.weaken 0F e))
  elim i (some P)    e = some (elim i P (Term.Meta.weaken 0F e))
  elim i (pred p)    e = pred (Term.Var.elim i p e)
  elim i (comb f Ps) e = comb f (helper i Ps e)
    where
    helper : ∀ i → Vec (Assertion Σ (insert Γ i t) Δ) k → Term Σ Γ Δ t → Vec (Assertion Σ Γ Δ) k
    helper i []       e = []
    helper i (P ∷ Ps) e = elim i P e ∷ helper i Ps e

  elimAll : Assertion Σ Γ Δ → All (Term Σ ts Δ) Γ → Assertion Σ ts Δ
  elimAll (all P)     es = all (elimAll P (map (Term.Meta.weaken 0F) es))
  elimAll (some P)    es = some (elimAll P (map (Term.Meta.weaken 0F) es))
  elimAll (pred p)    es = pred (Term.Var.elimAll p es)
  elimAll (comb f Ps) es = comb f (helper Ps es)
    where
    helper : Vec (Assertion Σ Γ Δ) n → All (Term Σ ts Δ) Γ → Vec (Assertion Σ ts Δ) n
    helper []       es = []
    helper (P ∷ Ps) es = elimAll P es ∷ helper Ps es

module Meta where
  weaken : ∀ i → Assertion Σ Γ Δ → Assertion Σ Γ (insert Δ i t)
  weaken i (all P)     = all (weaken (suc i) P)
  weaken i (some P)    = some (weaken (suc i) P)
  weaken i (pred p)    = pred (Term.Meta.weaken i p)
  weaken i (comb f Ps) = comb f (helper i Ps)
    where
    helper : ∀ i → Vec (Assertion Σ Γ Δ) k → Vec (Assertion Σ Γ (insert Δ i t)) k
    helper i []       = []
    helper i (P ∷ Ps) = weaken i P ∷ helper i Ps

  elim : ∀ i → Assertion Σ Γ (insert Δ i t) → Term Σ Γ Δ t → Assertion Σ Γ Δ
  elim i (all P)     e = all (elim (suc i) P (Term.Meta.weaken 0F e))
  elim i (some P)    e = some (elim (suc i) P (Term.Meta.weaken 0F e))
  elim i (pred p)    e = pred (Term.Meta.elim i p e)
  elim i (comb f Ps) e = comb f (helper i Ps e)
    where
    helper : ∀ i → Vec (Assertion Σ Γ (insert Δ i t)) k → Term Σ Γ Δ t → Vec (Assertion Σ Γ Δ) k
    helper i []       e = []
    helper i (P ∷ Ps) e = elim i P e ∷ helper i Ps e

subst : Assertion Σ Γ Δ → Reference Σ Γ t → Term Σ Γ Δ t → Assertion Σ Γ Δ
subst (all P)     ref val = all (subst P ref (Term.Meta.weaken 0F val))
subst (some P)    ref val = some (subst P ref (Term.Meta.weaken 0F val))
subst (pred p)    ref val = pred (Term.subst p ref val)
subst (comb f Ps) ref val = comb f (helper Ps ref val)
  where
  helper : Vec (Assertion Σ Γ Δ) k → Reference Σ Γ t → Term Σ Γ Δ t → Vec (Assertion Σ Γ Δ) k
  helper []       ref val = []
  helper (P ∷ Ps) ref val = subst P ref val ∷ Ps


module Semantics (2≉0 : 2≉0) where
  module TS {i} {j} {k} = Term.Semantics {i} {j} {k} 2≉0

  ⟦_⟧ : Assertion Σ Γ Δ → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Δ ⟧ₜ′ → Set ℓ
  ⟦_⟧′ : Vec (Assertion Σ Γ Δ) n → ⟦ Σ ⟧ₜ′ → ⟦ Γ ⟧ₜ′ → ⟦ Δ ⟧ₜ′ → Vec (Set ℓ) n

  ⟦_⟧ {Δ = Δ} (all P)  σ γ δ = ∀ x → ⟦ P ⟧ σ γ (cons′ Δ x δ)
  ⟦_⟧ {Δ = Δ} (some P) σ γ δ = ∃ λ x → ⟦ P ⟧ σ γ (cons′ Δ x δ)
  ⟦ pred p ⟧           σ γ δ = Lift ℓ (Bool.T (lower (TS.⟦ p ⟧ σ γ δ)))
  ⟦ comb f Ps ⟧        σ γ δ = f (Vecᵣ.fromVec (⟦ Ps ⟧′ σ γ δ))

  ⟦ [] ⟧′     σ γ δ = []
  ⟦ P ∷ Ps ⟧′ σ γ δ = ⟦ P ⟧ σ γ δ ∷ ⟦ Ps ⟧′ σ γ δ