blob: de4f4116f3005c828eea16228d0b71013f4e68eb (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
------------------------------------------------------------------------
-- Agda Helium
--
-- Base definitions for the axiomatic semantics
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
open import Helium.Data.Pseudocode.Types using (RawPseudocode)
module Helium.Semantics.Axiomatic.Core
{b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃}
(rawPseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃)
where
private
open module C = RawPseudocode rawPseudocode
open import Data.Bool as Bool using (Bool)
open import Data.Fin as Fin using (Fin; zero; suc)
open import Data.Fin.Patterns
open import Data.Nat as ℕ using (ℕ; suc)
import Data.Nat.Induction as Natᵢ
import Data.Nat.Properties as ℕₚ
open import Data.Product as × using (_×_; _,_; uncurry)
open import Data.Sum using (_⊎_)
open import Data.Unit using (⊤)
open import Data.Vec as Vec using (Vec; []; _∷_; _++_; lookup)
open import Data.Vec.Relation.Unary.All as All using (All; []; _∷_)
open import Function using (_on_)
open import Helium.Data.Pseudocode.Core
open import Helium.Data.Pseudocode.Properties
import Induction.WellFounded as Wf
open import Level using (_⊔_; Lift; lift)
import Relation.Binary.Construct.On as On
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; cong₂)
open import Relation.Nullary using (Dec; does; yes; no)
open import Relation.Nullary.Decidable.Core using (True; toWitness; map′)
open import Relation.Nullary.Product using (_×-dec_)
open import Relation.Unary using (_⊆_)
private
variable
t t′ : Type
m n : ℕ
Γ Δ Σ ts : Vec Type m
⟦_⟧ₜ : Type → Set (b₁ ⊔ i₁ ⊔ r₁)
⟦_⟧ₜ′ : Vec Type n → Set (b₁ ⊔ i₁ ⊔ r₁)
⟦ bool ⟧ₜ = Lift (b₁ ⊔ i₁ ⊔ r₁) Bool
⟦ int ⟧ₜ = Lift (b₁ ⊔ r₁) ℤ
⟦ fin n ⟧ₜ = Lift (b₁ ⊔ i₁ ⊔ r₁) (Fin n)
⟦ real ⟧ₜ = Lift (b₁ ⊔ i₁) ℝ
⟦ bit ⟧ₜ = Lift (i₁ ⊔ r₁) Bit
⟦ bits n ⟧ₜ = Vec ⟦ bit ⟧ₜ n
⟦ tuple n ts ⟧ₜ = ⟦ ts ⟧ₜ′
⟦ array t n ⟧ₜ = Vec ⟦ t ⟧ₜ n
⟦ [] ⟧ₜ′ = Lift (b₁ ⊔ i₁ ⊔ r₁) ⊤
⟦ t ∷ ts ⟧ₜ′ = ⟦ t ⟧ₜ × ⟦ ts ⟧ₜ′
Transform : Vec Type m → Type → Set (b₁ ⊔ i₁ ⊔ r₁)
Transform ts t = ⟦ ts ⟧ₜ′ → ⟦ t ⟧ₜ
Predicate : Vec Type m → Set (b₁ ⊔ i₁ ⊔ r₁)
Predicate ts = ⟦ ts ⟧ₜ′ → Bool
-- data HoareTriple {n Γ m Δ} : Assertion Σ {n} Γ {m} Δ → Statement Γ → Assertion Σ Γ Δ → Set (b₁ ⊔ i₁ ⊔ r₁) where
-- _∙_ : ∀ {P Q R s₁ s₂} → HoareTriple P s₁ Q → HoareTriple Q s₂ R → HoareTriple P (s₁ ∙ s₂) R
-- skip : ∀ {P} → HoareTriple P skip P
-- assign : ∀ {P t ref canAssign e} → HoareTriple (asrtSubst P (toWitness canAssign) (ℰ e)) (_≔_ {t = t} ref {canAssign} e) P
-- declare : ∀ {t P Q e s} → HoareTriple (P ∧ equal (var 0F) (termWknVar (ℰ e))) s (asrtWknVar Q) → HoareTriple (asrtElimVar P (ℰ e)) (declare {t = t} e s) Q
-- invoke : ∀ {m ts P Q s e} → HoareTriple (assignMetas Δ ts (All.tabulate var) (asrtAddVars P)) s (asrtAddVars Q) → HoareTriple (assignMetas Δ ts (All.tabulate (λ i → ℰ (All.lookup i e))) (asrtAddVars P)) (invoke {m = m} {ts} (s ∙end) e) (asrtAddVars Q)
-- if : ∀ {P Q e s₁ s₂} → HoareTriple (P ∧ equal (ℰ e) (𝒦 (Bool.true ′b))) s₁ Q → HoareTriple (P ∧ equal (ℰ e) (𝒦 (Bool.false ′b))) s₂ Q → HoareTriple P (if e then s₁ else s₂) Q
-- for : ∀ {m} {I : Assertion Σ Γ (fin (suc m) ∷ Δ)} {s} → HoareTriple (some (asrtWknVar (asrtWknMetaAt 1F I) ∧ equal (meta 1F) (var 0F) ∧ equal (meta 0F) (func (λ { _ (lift x ∷ []) → lift (Fin.inject₁ x) }) (meta 1F ∷ [])))) s (some (asrtWknVar (asrtWknMetaAt 1F I) ∧ equal (meta 0F) (func (λ { _ (lift x ∷ []) → lift (Fin.suc x) }) (meta 1F ∷ [])))) → HoareTriple (some (I ∧ equal (meta 0F) (func (λ _ _ → lift 0F) []))) (for m s) (some (I ∧ equal (meta 0F) (func (λ _ _ → lift (Fin.fromℕ m)) [])))
-- consequence : ∀ {P₁ P₂ Q₁ Q₂ s} → ⟦ P₁ ⟧ₐ ⊆ ⟦ P₂ ⟧ₐ → HoareTriple P₂ s Q₂ → ⟦ Q₂ ⟧ₐ ⊆ ⟦ Q₁ ⟧ₐ → HoareTriple P₁ s Q₁
-- some : ∀ {t P Q s} → HoareTriple P s Q → HoareTriple (some {t = t} P) s (some Q)
-- frame : ∀ {P Q R s} → HoareTriple P s Q → HoareTriple (P * R) s (Q * R)
|