1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
------------------------------------------------------------------------
-- Agda Helium
--
-- Base definitions for the axiomatic semantics
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
open import Helium.Data.Pseudocode.Types using (RawPseudocode)
module Helium.Semantics.Axiomatic.Core
{b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃}
(rawPseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃)
where
private
open module C = RawPseudocode rawPseudocode
open import Data.Bool using (Bool; T)
open import Data.Fin as Fin using (zero; suc)
import Data.Fin.Properties as Finₚ
-- open import Data.Nat as ℕ using (zero; suc)
import Data.Nat as ℕ
import Data.Nat.Properties as ℕₚ
open import Data.Product using (∃; _×_; _,_; <_,_>)
open import Data.Sum using (_⊎_)
open import Data.Unit using (⊤)
open import Data.Vec using (Vec; _∷_; lookup)
open import Data.Vec.Relation.Unary.All as All using (All; []; _∷_)
open import Function using (_$_)
open import Helium.Data.Pseudocode.Core
open import Helium.Semantics.Core rawPseudocode
open import Level using (_⊔_; Lift)
open import Relation.Binary.PropositionalEquality using (refl)
open import Relation.Nullary using (yes; no)
open import Relation.Unary using (Decidable; _⊆_)
module _ {o} (Σ : Vec Type o) {n} (Γ : Vec Type n) where
data Term {m} (Δ : Vec Type m) : Type → Set (b₁ ⊔ i₁ ⊔ r₁) where
state : ∀ i → Term Δ (lookup Σ i)
var : ∀ i → Term Δ (lookup Γ i)
meta : ∀ i → Term Δ (lookup Δ i)
funct : ∀ {m ts t} → (⟦ tuple m ts ⟧ₜˡ → ⟦ t ⟧ₜˡ) → All (Term Δ) ts → Term Δ t
infixl 7 _⇒_
infixl 6 _∧_
infixl 5 _∨_
data Assertion {m} (Δ : Vec Type m) : Set (b₁ ⊔ i₁ ⊔ r₁) where
_∧_ : Assertion Δ → Assertion Δ → Assertion Δ
_∨_ : Assertion Δ → Assertion Δ → Assertion Δ
_⇒_ : Assertion Δ → Assertion Δ → Assertion Δ
all : ∀ {t} → Assertion (t ∷ Δ) → Assertion Δ
some : ∀ {t} → Assertion (t ∷ Δ) → Assertion Δ
pred : ∀ {m ts} → (⟦ tuple m ts ⟧ₜˡ → Bool) → All (Term Δ) ts → Assertion Δ
module _ {o} {Σ : Vec Type o} {n} {Γ : Vec Type n} {m} {Δ : Vec Type m} where
⟦_⟧ : ∀ {t} → Term Σ Γ Δ t → ⟦ Σ ⟧ₜˡ′ → ⟦ Γ ⟧ₜˡ′ → ⟦ Δ ⟧ₜˡ′ → ⟦ t ⟧ₜˡ
⟦_⟧′ : ∀ {n ts} → All (Term Σ Γ Δ) ts → ⟦ Σ ⟧ₜˡ′ → ⟦ Γ ⟧ₜˡ′ → ⟦ Δ ⟧ₜˡ′ → ⟦ tuple n ts ⟧ₜˡ
⟦ state i ⟧ σ γ δ = fetchˡ Σ σ i
⟦ var i ⟧ σ γ δ = fetchˡ Γ γ i
⟦ meta i ⟧ σ γ δ = fetchˡ Δ δ i
⟦ funct f ts ⟧ σ γ δ = f (⟦ ts ⟧′ σ γ δ)
⟦ [] ⟧′ σ γ δ = _
⟦ (t ∷ []) ⟧′ σ γ δ = ⟦ t ⟧ σ γ δ
⟦ (t ∷ t′ ∷ ts) ⟧′ σ γ δ = ⟦ t ⟧ σ γ δ , ⟦ t′ ∷ ts ⟧′ σ γ δ
termSubstState : ∀ {t} → Term Σ Γ Δ t → ∀ j → Term Σ Γ Δ (lookup Σ j) → Term Σ Γ Δ t
termSubstState (state i) j t′ with j Fin.≟ i
... | yes refl = t′
... | no _ = state i
termSubstState (var i) j t′ = var i
termSubstState (meta i) j t′ = meta i
termSubstState (funct f ts) j t′ = funct f (helper ts)
where
helper : ∀ {n ts} → All (Term Σ Γ Δ) {n} ts → All (Term Σ Γ Δ) ts
helper [] = []
helper (t ∷ ts) = termSubstState t j t′ ∷ helper ts
termSubstVar : ∀ {t} → Term Σ Γ Δ t → ∀ j → Term Σ Γ Δ (lookup Γ j) → Term Σ Γ Δ t
termSubstVar (state i) j t′ = state i
termSubstVar (var i) j t′ with j Fin.≟ i
... | yes refl = t′
... | no _ = var i
termSubstVar (meta i) j t′ = meta i
termSubstVar (funct f ts) j t′ = funct f (helper ts)
where
helper : ∀ {n ts} → All (Term Σ Γ Δ) {n} ts → All (Term Σ Γ Δ) ts
helper [] = []
helper (t ∷ ts) = termSubstVar t j t′ ∷ helper ts
termElimVar : ∀ {t t′} → Term Σ (t′ ∷ Γ) Δ t → Term Σ Γ Δ t′ → Term Σ Γ Δ t
termElimVar (state i) t′ = state i
termElimVar (var zero) t′ = t′
termElimVar (var (suc i)) t′ = var i
termElimVar (meta i) t′ = meta i
termElimVar (funct f ts) t′ = funct f (helper ts)
where
helper : ∀ {n ts} → All (Term _ _ _) {n} ts → All (Term _ _ _) ts
helper [] = []
helper (t ∷ ts) = termElimVar t t′ ∷ helper ts
termWknVar : ∀ {t t′} → Term Σ Γ Δ t → Term Σ (t′ ∷ Γ) Δ t
termWknVar (state i) = state i
termWknVar (var i) = var (suc i)
termWknVar (meta i) = meta i
termWknVar (funct f ts) = funct f (helper ts)
where
helper : ∀ {n ts} → All (Term _ _ _) {n} ts → All (Term _ _ _) ts
helper [] = []
helper (t ∷ ts) = termWknVar t ∷ helper ts
termWknMeta : ∀ {t t′} → Term Σ Γ Δ t → Term Σ Γ (t′ ∷ Δ) t
termWknMeta (state i) = state i
termWknMeta (var i) = var i
termWknMeta (meta i) = meta (suc i)
termWknMeta (funct f ts) = funct f (helper ts)
where
helper : ∀ {n ts} → All (Term _ _ _) {n} ts → All (Term _ _ _) ts
helper [] = []
helper (t ∷ ts) = termWknMeta t ∷ helper ts
module _ {o} {Σ : Vec Type o} {n} {Γ : Vec Type n} where
infix 4 _∋[_] _⊨_
_∋[_] : ∀ {m Δ} → Assertion Σ Γ {m} Δ → ⟦ Σ ⟧ₜˡ′ × ⟦ Γ ⟧ₜˡ′ × ⟦ Δ ⟧ₜˡ′ → Set (b₁ ⊔ i₁ ⊔ r₁)
P ∧ Q ∋[ s ] = P ∋[ s ] × Q ∋[ s ]
P ∨ Q ∋[ s ] = P ∋[ s ] ⊎ Q ∋[ s ]
P ⇒ Q ∋[ s ] = P ∋[ s ] → Q ∋[ s ]
pred P ts ∋[ σ , γ , δ ] = Lift (b₁ ⊔ i₁ ⊔ r₁) $ T $ P (⟦ ts ⟧′ σ γ δ)
_∋[_] {Δ = Δ} (all P) (σ , γ , δ) = ∀ v → P ∋[ σ , γ , consˡ Δ v δ ]
_∋[_] {Δ = Δ} (some P) (σ , γ , δ) = ∃ λ v → P ∋[ σ , γ , consˡ Δ v δ ]
_⊨_ : ∀ {m Δ} → ⟦ Σ ⟧ₜˡ′ × ⟦ Γ ⟧ₜˡ′ × ⟦ Δ ⟧ₜˡ′ → Assertion Σ Γ {m} Δ → Set (b₁ ⊔ i₁ ⊔ r₁)
s ⊨ P = P ∋[ s ]
asstSubstState : ∀ {m Δ} → Assertion Σ Γ {m} Δ → ∀ j → Term Σ Γ Δ (lookup Σ j) → Assertion Σ Γ Δ
asstSubstState (P ∧ Q) j t = asstSubstState P j t ∧ asstSubstState Q j t
asstSubstState (P ∨ Q) j t = asstSubstState P j t ∨ asstSubstState Q j t
asstSubstState (P ⇒ Q) j t = asstSubstState P j t ⇒ asstSubstState Q j t
asstSubstState (all P) j t = all (asstSubstState P j (termWknMeta t))
asstSubstState (some P) j t = some (asstSubstState P j (termWknMeta t))
asstSubstState (pred p ts) j t = pred p (All.map (λ t′ → termSubstState t′ j t) ts)
asstSubstVar : ∀ {m Δ} → Assertion Σ Γ {m} Δ → ∀ j → Term Σ Γ Δ (lookup Γ j) → Assertion Σ Γ Δ
asstSubstVar (P ∧ Q) j t = asstSubstVar P j t ∧ asstSubstVar Q j t
asstSubstVar (P ∨ Q) j t = asstSubstVar P j t ∨ asstSubstVar Q j t
asstSubstVar (P ⇒ Q) j t = asstSubstVar P j t ⇒ asstSubstVar Q j t
asstSubstVar (all P) j t = all (asstSubstVar P j (termWknMeta t))
asstSubstVar (some P) j t = some (asstSubstVar P j (termWknMeta t))
asstSubstVar (pred p ts) j t = pred p (All.map (λ t′ → termSubstVar t′ j t) ts)
asstElimVar : ∀ {m Δ t′} → Assertion Σ (t′ ∷ Γ) {m} Δ → Term Σ Γ Δ t′ → Assertion Σ Γ Δ
asstElimVar (P ∧ Q) t = asstElimVar P t ∧ asstElimVar Q t
asstElimVar (P ∨ Q) t = asstElimVar P t ∨ asstElimVar Q t
asstElimVar (P ⇒ Q) t = asstElimVar P t ⇒ asstElimVar Q t
asstElimVar (all P) t = all (asstElimVar P (termWknMeta t))
asstElimVar (some P) t = some (asstElimVar P (termWknMeta t))
asstElimVar (pred p ts) t = pred p (All.map (λ t′ → termElimVar t′ t) ts)
module _ {o} {Σ : Vec Type o} where
open Code Σ
data HoareTriple {n Γ m Δ} : Assertion Σ {n} Γ {m} Δ → Statement Γ → Assertion Σ Γ Δ → Set (b₁ ⊔ i₁ ⊔ r₁) where
csqs : ∀ {P₁ P₂ Q₁ Q₂ : Assertion Σ Γ Δ} {s} → (_⊨ P₁) ⊆ (_⊨ P₂) → HoareTriple P₂ s Q₂ → (_⊨ Q₂) ⊆ (_⊨ Q₁) → HoareTriple P₁ s Q₁
_∙_ : ∀ {P Q R s₁ s₂} → HoareTriple P s₁ Q → HoareTriple Q s₂ R → HoareTriple P (s₁ ∙ s₂) R
skip : ∀ {P} → HoareTriple P skip P
|