summaryrefslogtreecommitdiff
path: root/src/Helium/Semantics/Denotational.agda
blob: c2a4d6e21b693c60bce6abfef789f75e94157e71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
{-# OPTIONS --safe --without-K #-}

open import Helium.Data.Pseudocode

module Helium.Semantics.Denotational
  {b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃}
  (pseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃)
  where

open import Algebra.Core using (Op₂)
open import Data.Bool as Bool using (Bool)
open import Data.Fin as Fin hiding (cast; lift; _+_)
import Data.Fin.Properties as Finₚ
open import Data.Maybe using (just; nothing; _>>=_)
open import Data.Nat hiding (_⊔_)
import Data.Nat.Properties as ℕₚ
open import Data.Product using (∃; _,_; dmap)
open import Data.Sum using ([_,_]′)
open import Data.Vec.Functional as V using (Vector)
open import Function.Nary.NonDependent.Base
open import Helium.Instructions
import Helium.Semantics.Denotational.Core as Core
open import Level hiding (lift; zero; suc)
open import Relation.Binary using (Transitive)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import Relation.Nullary.Decidable

open RawPseudocode pseudocode

private
  ℓ : Level
  ℓ = b₁

record State : Set ℓ where
  field
    S : Vector (Bits 32) 32
    R : Vector (Bits 32) 16

open Core State

Beat : Set
Beat = Fin 4

ElmtMask : Set b₁
ElmtMask = Bits 4

-- State properties

&R : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (Fin 16) → Reference n Γ (Bits 32)
&R e = record
  { get = λ σ ρ → e σ ρ >>= λ (σ , i) → just (σ , State.R σ i)
  ; set = λ σ ρ x → e σ ρ >>= λ (σ , i) → just (record σ { R = V.updateAt i (λ _ → x) (State.R σ) } , ρ)
  }

&S : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ (Fin 32) → Reference n Γ (Bits 32)
&S e = record
  { get = λ σ ρ → e σ ρ >>= λ (σ , i) → just (σ , State.S σ i)
  ; set = λ σ ρ x → e σ ρ >>= λ (σ , i) → just (record σ { S = V.updateAt i (λ _ → x) (State.S σ) } , ρ)
  }

&Q : ∀ {n ls} {Γ : Sets n ls} → Expr n Γ VecReg → Expr n Γ Beat → Reference n Γ (Bits 32)
&Q reg beat = &S (λ σ ρ → reg σ ρ >>= λ (σ , reg) → beat σ ρ >>= λ (σ , beat) → just (σ , combine reg beat))

-- Reference properties

&cast : ∀ {k m n ls} {Γ : Sets n ls} → .(eq : k ≡ m) → Reference n Γ (Bits k) → Reference n Γ (Bits m)
&cast eq &v = record
  { get = λ σ ρ → Reference.get &v σ ρ >>= λ (σ , v) → just (σ , cast eq v)
  ; set = λ σ ρ x → Reference.set &v σ ρ (cast (sym eq) x)
  }

slice : ∀ {k m n ls} {Γ : Sets n ls} → Reference n Γ (Bits m) → Expr n Γ (∃ λ (i : Fin (suc m)) → ∃ λ j → toℕ (i - j) ≡ k) → Reference n Γ (Bits k)
slice &v idx = record
  { get = λ σ ρ → Reference.get &v σ ρ >>= λ (σ , v) → idx σ ρ >>= λ (σ , i , j , i-j≡k) → just (σ , cast i-j≡k (sliceᵇ i j v))
  ; set = λ σ ρ v → Reference.get &v σ ρ >>= λ (σ , v′) → idx σ ρ >>= λ (σ , i , j , i-j≡k) → Reference.set &v σ ρ (updateᵇ i j (cast (sym i-j≡k) v) v′)
  }

elem : ∀ {k n ls} {Γ : Sets n ls} m → Reference n Γ (Bits (k * m)) → Expr n Γ (Fin k) → Reference n Γ (Bits m)
elem m &v idx = slice &v λ σ ρ → idx σ ρ >>= λ (σ , i) → just (σ , helper _ _ i)
  where
  helper : ∀ m n → Fin m → ∃ λ (i : Fin (suc (m * n))) → ∃ λ j → toℕ (i - j) ≡ n
  helper (suc m) n zero    = inject+ (m * n) (fromℕ n) , # 0 , eq
    where
    eq = trans (sym (Finₚ.toℕ-inject+ (m * n) (fromℕ n))) (Finₚ.toℕ-fromℕ n)
  helper (suc m) n (suc i) with x , y , x-y≡n ← helper m n i =
      u ,
      v ,
      trans
        (cast‿- (raise n x) (Fin.cast eq₂ (raise n y)) eq₁)
        (trans (raise‿- (suc (m * n)) n x y eq₂) x-y≡n)
    where
    eq₁ = ℕₚ.+-suc n (m * n)
    eq₂ = trans (ℕₚ.+-suc n (toℕ x)) (cong suc (sym (Finₚ.toℕ-raise n x)))
    eq₂′ = cong suc (sym (Finₚ.toℕ-cast eq₁ (raise n x)))
    u = Fin.cast eq₁ (raise n x)
    v = Fin.cast eq₂′ (Fin.cast eq₂ (raise n y))

    raise‿- : ∀ m n (x : Fin m) y .(eq : n + suc (toℕ x) ≡ suc (toℕ (raise n x))) → toℕ (raise n x - Fin.cast eq (raise n y)) ≡ toℕ (x - y)
    raise‿- m       ℕ.zero  x       zero    _ = refl
    raise‿- (suc m) ℕ.zero  (suc x) (suc y) p = raise‿- m ℕ.zero x y (ℕₚ.suc-injective p)
    raise‿- m       (suc n) x       y       p = raise‿- m n x y (ℕₚ.suc-injective p)

    cast‿- : ∀ {m n} (x : Fin m) y .(eq : m ≡ n) → toℕ (Fin.cast eq x - Fin.cast (cong suc (sym (Finₚ.toℕ-cast eq x))) y) ≡ toℕ (x - y)
    cast‿- {suc m} {suc n} x       zero    eq = Finₚ.toℕ-cast eq x
    cast‿- {suc m} {suc n} (suc x) (suc y) eq = cast‿- x y (ℕₚ.suc-injective eq)

-- General functions

copy-masked : VecReg → Procedure 3 (Bits 32 , Beat , ElmtMask , _)
copy-masked dest = for 4 (lift (
  -- e result beat elmtMask
  if ⦇ (λ x y → does (getᵇ y x ≟ᵇ 1b)) (!# 3) (!# 0) ⦈
  then
    elem 8 (&Q ⦇ dest ⦈ (!# 2)) (!# 0) ≔ (! elem 8 (var (# 1)) (!# 0))
  else
    skip))

module _
  (d : VecOp₂)
  where

  open VecOp₂ d

  vec-op₂ : Op₂ (Bits (toℕ esize)) → Procedure 2 (Beat , ElmtMask , _)
  vec-op₂ op = declare ⦇ zeros ⦈ (declare (! &Q ⦇ src₁ ⦈ (!# 1)) (
    -- op₁ result beat elmtMask
    for (toℕ elements) (lift (
      -- e op₁ result beat elmtMask
      elem (toℕ esize) (&cast (sym e*e≡32) (var (# 2))) (!# 0) ≔
      ⦇ op
        (! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 1))) (!# 0))
        ([ (λ src₂ → ! slice (&R ⦇ src₂ ⦈) ⦇ (esize , zero , refl) ⦈)
         , (λ src₂ → ! elem (toℕ esize) (&cast (sym e*e≡32) (&Q ⦇ src₂ ⦈ (!# 3))) (!# 0))
         ]′ src₂) ⦈
    )) ∙
    ignore (call (copy-masked dest) ⦇ !# 1 , ⦇ !# 2 , !# 3 ⦈ ⦈)))

-- Instruction semantics

module _
  (≈ᶻ-trans : Transitive _≈ᶻ_)
  (round∘⟦⟧ : ∀ x → x ≈ᶻ round ⟦ x ⟧)
  (round-cong : ∀ {x y} → x ≈ʳ y → round x ≈ᶻ round y)
  (0#-homo-round : round 0ℝ ≈ᶻ 0ℤ)
  (2^n≢0 : ∀ n → False (2ℤ ^ᶻ n ≟ᶻ 0ℤ))
  (*ᶻ-identityʳ : ∀ x → x *ᶻ 1ℤ ≈ᶻ x)
  where

  open sliceᶻ ≈ᶻ-trans round∘⟦⟧ round-cong 0#-homo-round 2^n≢0 *ᶻ-identityʳ

  vadd : VAdd → Procedure 2 (Beat , ElmtMask , _)
  vadd d = vec-op₂ d (λ x y → sliceᶻ _ zero (uint x +ᶻ uint y))

  vhsub : VHSub → Procedure 2 (Beat , ElmtMask , _)
  vhsub d = vec-op₂ op₂ (λ x y → sliceᶻ _ (suc zero) (int x +ᶻ -ᶻ int y))
    where open VHSub d ; int = Bool.if unsigned then uint else sint

  vmul : VMul → Procedure 2 (Beat , ElmtMask , _)
  vmul d = vec-op₂ d (λ x y → sliceᶻ _ zero (sint x *ᶻ sint y))