summaryrefslogtreecommitdiff
path: root/src/Helium/Semantics/Denotational.agda
blob: 77786f1f6118bc0492c688dbe823ec0e408673af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
------------------------------------------------------------------------
-- Agda Helium
--
-- Denotational semantics of Armv8-M instructions.
------------------------------------------------------------------------

{-# OPTIONS --safe --without-K #-}

open import Helium.Data.Pseudocode

module Helium.Semantics.Denotational
  {b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃}
  (pseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃)
  where

open import Algebra.Core using (Op₂)
open import Data.Bool as Bool using (Bool; true; false)
open import Data.Fin as Fin hiding (cast; lift; _+_)
import Data.Fin.Properties as Finₚ
open import Data.Maybe using (just; nothing; _>>=_)
open import Data.Nat hiding (_⊔_)
import Data.Nat.Properties as ℕₚ
open import Data.Product using (∃; _×_; _,_; dmap)
open import Data.Sum using ([_,_]′)
open import Data.Vec.Functional as V using (Vector)
open import Function using (_$_; _∘₂_)
open import Function.Nary.NonDependent.Base
open import Helium.Instructions
import Helium.Semantics.Denotational.Core as Core
open import Level hiding (lift; zero; suc)
open import Relation.Binary using (Transitive)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import Relation.Nullary.Decidable

open RawPseudocode pseudocode

private
  ℓ : Level
  ℓ = b₁

record State : Set ℓ where
  field
    S : Vector (Bits 32) 32
    R : Vector (Bits 32) 16
    P0 : Bits 16
    mask : Bits 8
    QC : Bits 1
    advanceVPT : Bool

open Core State

Beat : Set
Beat = Fin 4

hilow : Beat → Fin 2
hilow zero          = zero
hilow (suc zero)    = zero
hilow (suc (suc _)) = suc zero

oddeven : Beat → Fin 2
oddeven zero                   = zero
oddeven (suc zero)             = suc zero
oddeven (suc (suc zero))       = zero
oddeven (suc (suc (suc zero))) = suc zero

ElmtMask : Set b₁
ElmtMask = Bits 4

-- State properties

&R : ∀ {n ls} {Γ : Sets n ls} → PureExpr n Γ (Fin 16) → Reference n Γ (Bits 32)
&R e = record
  { get = λ σ ρ → State.R σ (e σ ρ)
  ; set = λ x σ ρ → record σ { R = V.updateAt (e σ ρ) (λ _ → x) (State.R σ) } , ρ
  }

&S : ∀ {n ls} {Γ : Sets n ls} → PureExpr n Γ (Fin 32) → Reference n Γ (Bits 32)
&S e = record
  { get = λ σ ρ → State.S σ (e σ ρ)
  ; set = λ x σ ρ → record σ { S = V.updateAt (e σ ρ) (λ _ → x) (State.S σ) } , ρ
  }

&Q : ∀ {n ls} {Γ : Sets n ls} → PureExpr n Γ VecReg → PureExpr n Γ Beat → Reference n Γ (Bits 32)
&Q reg beat = &S λ σ ρ → combine (reg σ ρ) (beat σ ρ)

&FPSCR-QC : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ (Bits 1)
&FPSCR-QC = record
  { get = λ σ ρ → State.QC σ
  ; set = λ x σ ρ → record σ { QC = x } , ρ
  }

&VPR-P0 : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ (Bits 16)
&VPR-P0 = record
  { get = λ σ ρ → State.P0 σ
  ; set = λ x σ ρ → record σ { P0 = x } , ρ
  }

&VPR-mask : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ (Bits 8)
&VPR-mask = record
  { get = λ σ ρ → State.mask σ
  ; set = λ x σ ρ → record σ { mask = x } , ρ
  }

&AdvanceVPT : ∀ {n ls} {Γ : Sets n ls} → Reference n Γ Bool
&AdvanceVPT = record
  { get = λ σ ρ → State.advanceVPT σ
  ; set = λ x σ ρ → record σ { advanceVPT = x } , ρ
  }

-- Reference properties

&cast : ∀ {k m n ls} {Γ : Sets n ls} → .(eq : k ≡ m) → Reference n Γ (Bits k) → Reference n Γ (Bits m)
&cast eq &v = record
  { get = λ σ ρ → cast eq (Reference.get &v σ ρ)
  ; set = λ x σ ρ → Reference.set &v (cast (sym eq) x) σ ρ
  }

slice : ∀ {k m n ls} {Γ : Sets n ls} → Reference n Γ (Bits m) → PureExpr n Γ (∃ λ (i : Fin (suc m)) → ∃ λ j → toℕ (i - j) ≡ k) → Reference n Γ (Bits k)
slice &v idx = record
  { get = λ σ ρ → let (i , j , i-j≡k) = idx σ ρ in cast i-j≡k (sliceᵇ i j (Reference.get &v σ ρ))
  ; set = λ v σ ρ →
    let (i , j , i-j≡k) = idx σ ρ in
    Reference.set &v (updateᵇ i j (cast (sym (i-j≡k)) v) (Reference.get &v σ ρ)) σ ρ
  }

elem : ∀ {k n ls} {Γ : Sets n ls} m → Reference n Γ (Bits (k * m)) → PureExpr n Γ (Fin k) → Reference n Γ (Bits m)
elem m &v idx = slice &v (λ σ ρ → helper _ _ (idx σ ρ))
  where
  helper : ∀ m n → Fin m → ∃ λ (i : Fin (suc (m * n))) → ∃ λ j → toℕ (i - j) ≡ n
  helper (suc m) n zero    = inject+ (m * n) (fromℕ n) , # 0 , eq
    where
    eq = trans (sym (Finₚ.toℕ-inject+ (m * n) (fromℕ n))) (Finₚ.toℕ-fromℕ n)
  helper (suc m) n (suc i) with x , y , x-y≡n ← helper m n i =
      u ,
      v ,
      trans
        (cast‿- (raise n x) (Fin.cast eq₂ (raise n y)) eq₁)
        (trans (raise‿- (suc (m * n)) n x y eq₂) x-y≡n)
    where
    eq₁ = ℕₚ.+-suc n (m * n)
    eq₂ = trans (ℕₚ.+-suc n (toℕ x)) (cong suc (sym (Finₚ.toℕ-raise n x)))
    eq₂′ = cong suc (sym (Finₚ.toℕ-cast eq₁ (raise n x)))
    u = Fin.cast eq₁ (raise n x)
    v = Fin.cast eq₂′ (Fin.cast eq₂ (raise n y))

    raise‿- : ∀ m n (x : Fin m) y .(eq : n + suc (toℕ x) ≡ suc (toℕ (raise n x))) → toℕ (raise n x - Fin.cast eq (raise n y)) ≡ toℕ (x - y)
    raise‿- m       ℕ.zero  x       zero    _ = refl
    raise‿- (suc m) ℕ.zero  (suc x) (suc y) p = raise‿- m ℕ.zero x y (ℕₚ.suc-injective p)
    raise‿- m       (suc n) x       y       p = raise‿- m n x y (ℕₚ.suc-injective p)

    cast‿- : ∀ {m n} (x : Fin m) y .(eq : m ≡ n) → toℕ (Fin.cast eq x - Fin.cast (cong suc (sym (Finₚ.toℕ-cast eq x))) y) ≡ toℕ (x - y)
    cast‿- {suc m} {suc n} x       zero    eq = Finₚ.toℕ-cast eq x
    cast‿- {suc m} {suc n} (suc x) (suc y) eq = cast‿- x y (ℕₚ.suc-injective eq)

-- General functions

copyMasked : VecReg → Procedure 3 (Bits 32 , Beat , ElmtMask , _)
copyMasked dest =
  for 4 (
    -- 0:e 1:result 2:beat 3:elmtMask
    if ⦇ (λ x y → does (getᵇ y x ≟ᵇ 1b)) (↓ !# 3) (↓ !# 0) ⦈
    then
      elem 8 (&Q (pure′ dest) (!# 2)) (!# 0) ≔ ↓! elem 8 (var (# 1)) (!# 0)
    else skip) ∙
  ⦇ _ ⦈

module fun-sliceᶻ
  (≈ᶻ-trans : Transitive _≈ᶻ_)
  (round∘float : ∀ x → x ≈ᶻ round (float x))
  (round-cong : ∀ {x y} → x ≈ʳ y → round x ≈ᶻ round y)
  (0#-homo-round : round 0ℝ ≈ᶻ 0ℤ)
  (2^n≢0 : ∀ n → False (2ℤ ^ᶻ n ≟ᶻ 0ℤ))
  (*ᶻ-identityʳ : ∀ x → x *ᶻ 1ℤ ≈ᶻ x)
  where

  open sliceᶻ ≈ᶻ-trans round∘float round-cong 0#-homo-round 2^n≢0 *ᶻ-identityʳ

  signedSatQ : ∀ n → Function 1 (ℤ , _) (Bits (suc n) × Bool)
  signedSatQ n = declare ⦇ true ⦈ $
    -- 0:sat 1:x
    if ⦇ (λ i → does (1ℤ << n +ᶻ -ᶻ 1ℤ <?ᶻ i)) (↓ !# 1) ⦈
    then
      var (# 1) ≔ ⦇ (1ℤ << n +ᶻ -ᶻ 1ℤ) ⦈
    else if ⦇ (λ i → does (-ᶻ 1ℤ << n <?ᶻ i)) (↓ !# 1) ⦈
    then
      var (# 1) ≔ ⦇ (-ᶻ 1ℤ << n) ⦈
    else
      var (# 0) ≔ ⦇ false ⦈ ∙
    ⦇ ⦇ (sliceᶻ (suc n) zero) (↓ !# 1) ⦈ , (↓ !# 0) ⦈

advanceVPT : Procedure 1 (Beat , _)
advanceVPT = declare (↓! elem 4 &VPR-mask (hilow ∘₂ !# 0)) $
  -- 0:vptState 1:beat
  if ⦇ (λ x → does (x ≟ᵇ 1b ∶ 0b ∶ 0b ∶ 0b)) (↓ !# 0) ⦈
  then
    var (# 0) ≔ ⦇ zeros ⦈
  else if ⦇ (λ x → does (x ≟ᵇ zeros {4})) (↓ !# 0) ⦈
  then skip
  else (
    if ⦇ (hasBit (# 3)) (↓ !# 0) ⦈
    then
      elem 4 &VPR-P0 (!# 1) ⟵ not
    else skip ∙
    (var (# 0) ⟵ λ x → sliceᵇ (# 3) zero x ∶ 0b)) ∙
  if ⦇ (λ x → does (oddeven x Finₚ.≟ # 1)) (↓ !# 1) ⦈
  then
    elem 4 &VPR-mask (hilow ∘₂ !# 1) ≔ ↓ !# 0
  else skip ∙
  ⦇ _ ⦈

execBeats : Procedure 2 (Beat , ElmtMask , _) → Procedure 0 _
execBeats inst = declare ⦇ ones ⦈ $
  for 4 (
    -- 0:beat 1:elmtMask
    if ⦇ (λ x → does (x ≟ᵇ zeros {4})) (↓! elem 4 &VPR-mask (hilow ∘₂ !# 0)) ⦈
    then
      var (# 1) ≔ ⦇ ones ⦈
    else
      var (# 1) ≔ ↓! elem 4 &VPR-P0 (!# 0) ∙
    &AdvanceVPT ≔ ⦇ true ⦈ ∙
    invoke inst ⦇ ↓ !# 0 , ↓ !# 1 ⦈ ∙
    if ↓! &AdvanceVPT
    then
      invoke advanceVPT (↓ !# 0)
    else skip) ∙
  ⦇ _ ⦈

module _
  (d : VecOp₂)
  where

  open VecOp₂ d

  vec-op₂ : Op₂ (Bits (toℕ esize)) → Procedure 2 (Beat , ElmtMask , _)
  vec-op₂ op = declare ⦇ zeros ⦈ $ declare (↓! &Q (pure′ src₁) (!# 1)) $
    for (toℕ elements) (
      -- 0:e 1:op₁ 2:result 3:beat 4:elmntMask
      elem (toℕ esize) (&cast (sym e*e≡32) (var (# 2))) (!# 0) ≔
        (⦇ op
           (↓! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 1))) (!# 0))
           ([ (λ src₂ → ↓! slice (&R (pure′ src₂)) (pure′ (esize , zero , refl)))
            , (λ src₂ → ↓! elem (toℕ esize) (&cast (sym e*e≡32) (&Q (pure′ src₂) (!# 3))) (!# 0))
            ]′ src₂) ⦈)) ∙
    invoke (copyMasked dest) ⦇ ↓ !# 1 , ⦇ ↓ !# 2 , ↓ !# 3 ⦈ ⦈ ∙
    ⦇ _ ⦈

-- Instruction semantics

module _
  (≈ᶻ-trans : Transitive _≈ᶻ_)
  (round∘float : ∀ x → x ≈ᶻ round (float x))
  (round-cong : ∀ {x y} → x ≈ʳ y → round x ≈ᶻ round y)
  (0#-homo-round : round 0ℝ ≈ᶻ 0ℤ)
  (2^n≢0 : ∀ n → False (2ℤ ^ᶻ n ≟ᶻ 0ℤ))
  (*ᶻ-identityʳ : ∀ x → x *ᶻ 1ℤ ≈ᶻ x)
  where

  open sliceᶻ ≈ᶻ-trans round∘float round-cong 0#-homo-round 2^n≢0 *ᶻ-identityʳ
  open fun-sliceᶻ ≈ᶻ-trans round∘float round-cong 0#-homo-round 2^n≢0 *ᶻ-identityʳ

  vadd : VAdd → Procedure 2 (Beat , ElmtMask , _)
  vadd d = vec-op₂ d (λ x y → sliceᶻ _ zero (uint x +ᶻ uint y))

  vsub : VSub → Procedure 2 (Beat , ElmtMask , _)
  vsub d = vec-op₂ d (λ x y → sliceᶻ _ zero (uint x +ᶻ -ᶻ uint y))

  vhsub : VHSub → Procedure 2 (Beat , ElmtMask , _)
  vhsub d = vec-op₂ op₂ (λ x y → sliceᶻ _ (suc zero) (int x +ᶻ -ᶻ int y))
    where open VHSub d ; int = Bool.if unsigned then uint else sint

  vmul : VMul → Procedure 2 (Beat , ElmtMask , _)
  vmul d = vec-op₂ d (λ x y → sliceᶻ _ zero (sint x *ᶻ sint y))

  vmulh : VMulH → Procedure 2 (Beat , ElmtMask , _)
  vmulh d = vec-op₂ op₂ (λ x y → cast (eq _ esize) (sliceᶻ 2esize esize′ (int x *ᶻ int y +ᶻ rval)))
    where
    open VMulH d
    int = Bool.if unsigned then uint else sint
    rval = Bool.if rounding then 1ℤ << toℕ esize-1 else 0ℤ
    2esize = toℕ esize + toℕ esize
    esize′ = inject+ _ (strengthen esize)
    eq : ∀ {n} m (i : Fin n) → toℕ i + m ℕ-ℕ inject+ m (strengthen i) ≡ m
    eq m zero    = refl
    eq m (suc i) = eq m i

  vqdmulh : VQDMulH → Procedure 2 (Beat , ElmtMask , _)
  vqdmulh d = declare ⦇ zeros ⦈ $ declare (↓! &Q (pure′ src₁) (!# 1)) $ declare ⦇ false ⦈ $
    for (toℕ elements) (
      -- 0:e 1:sat 2:op₁ 3:result 4:beat 5:elmntMask
      elem (toℕ esize) (&cast (sym e*e≡32) (var (# 3))) (!# 0) ,′ var (# 1) ≔
      call (signedSatQ (toℕ esize-1))
           ⦇ (λ x y → (2ℤ *ᶻ sint x *ᶻ sint y +ᶻ rval) >> toℕ esize)
             (↓! elem (toℕ esize) (&cast (sym e*e≡32) (var (# 2))) (!# 0))
             ([ (λ src₂ → ↓! slice (&R (pure′ src₂)) (pure′ (esize , zero , refl)))
              , (λ src₂ → ↓! elem (toℕ esize) (&cast (sym e*e≡32) (&Q (pure′ src₂) (!# 4))) (!# 0))
              ]′ src₂) ⦈ ∙
      if ↓ !# 1
      then if ⦇ (λ m e → hasBit (combine e zero) (cast (sym e*e>>3≡4) m)) (↓ !# 5) (↓ !# 0) ⦈
      then
        &FPSCR-QC ≔ ⦇ 1b ⦈
      else skip
      else skip) ∙
    invoke (copyMasked dest) ⦇ ↓ !# 2 , ⦇ ↓ !# 3 , ↓ !# 4 ⦈ ⦈ ∙
    ⦇ _ ⦈
    where
    open VQDMulH d
    rval = Bool.if rounding then 1ℤ << toℕ esize-1 else 0ℤ