1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
------------------------------------------------------------------------
-- Agda Helium
--
-- Base definitions for the denotational semantics.
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
open import Helium.Data.Pseudocode.Algebra using (RawPseudocode)
module Helium.Semantics.Denotational.Core
{b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃}
(rawPseudocode : RawPseudocode b₁ b₂ i₁ i₂ i₃ r₁ r₂ r₃)
where
private
open module C = RawPseudocode rawPseudocode
import Data.Bool as Bool
open import Data.Empty using (⊥-elim)
import Data.Fin as Fin
import Data.Integer as 𝕀
open import Data.Nat using (ℕ)
open import Data.Product using (_×_; _,_; proj₁; proj₂; <_,_>; uncurry)
open import Data.Vec as Vec using (Vec; []; _∷_; map; zipWith)
open import Data.Vec.Relation.Unary.All using (All; []; _∷_)
open import Function
open import Helium.Data.Pseudocode.Core
open import Helium.Semantics.Core rawPseudocode
open import Level
open import Relation.Binary.PropositionalEquality using (sym)
open import Relation.Nullary using (does)
private
variable
n : ℕ
t : Type
Σ Γ ts : Vec Type n
module Semantics (2≉0 : 2≉0) where
expr : Expression Σ Γ t → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ → ⟦ t ⟧ₜ
exprs : All (Expression Σ Γ) ts → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ → ⟦ ts ⟧ₜ′
ref : Reference Σ Γ t → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ → ⟦ t ⟧ₜ
locRef : LocalReference Σ Γ t → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ → ⟦ t ⟧ₜ
assign : Reference Σ Γ t → ⟦ t ⟧ₜ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′
locAssign : LocalReference Σ Γ t → ⟦ t ⟧ₜ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ → ⟦ Γ ⟧ₜ′
stmt : Statement Σ Γ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′
locStmt : LocalStatement Σ Γ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ → ⟦ Γ ⟧ₜ′
fun : Function Σ Γ t → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ → ⟦ t ⟧ₜ
proc : Procedure Σ Γ → ⟦ Σ ⟧ₜ′ × ⟦ Γ ⟧ₜ′ → ⟦ Σ ⟧ₜ′
expr (lit {t = t} x) = const (Κ[ t ] x)
expr {Σ = Σ} (state i) = fetch i Σ ∘ proj₁
expr {Γ = Γ} (var i) = fetch i Γ ∘ proj₂
expr (e ≟ e₁) = lift ∘ does ∘ uncurry ≈-dec ∘ < expr e , expr e₁ >
expr (e <? e₁) = lift ∘ does ∘ uncurry <-dec ∘ < expr e , expr e₁ >
expr (inv e) = lift ∘ Bool.not ∘ lower ∘ expr e
expr (e && e₁) = lift ∘ uncurry (Bool._∧_ on lower) ∘ < expr e , expr e₁ >
expr (e || e₁) = lift ∘ uncurry (Bool._∨_ on lower) ∘ < expr e , expr e₁ >
expr (not e) = map (lift ∘ 𝔹.¬_ ∘ lower) ∘ expr e
expr (e and e₁) = uncurry (zipWith (lift ∘₂ 𝔹._∧_ on lower)) ∘ < expr e , expr e₁ >
expr (e or e₁) = uncurry (zipWith (lift ∘₂ 𝔹._∨_ on lower)) ∘ < expr e , expr e₁ >
expr [ e ] = (_∷ []) ∘ expr e
expr (unbox e) = Vec.head ∘ expr e
expr (merge e e₁ e₂) = uncurry (uncurry mergeVec) ∘ < < expr e , expr e₁ > , lower ∘ expr e₂ >
expr (slice e e₁) = uncurry sliceVec ∘ < expr e , lower ∘ expr e₁ >
expr (cut e e₁) = uncurry cutVec ∘ < expr e , lower ∘ expr e₁ >
expr (cast eq e) = castVec eq ∘ expr e
expr (- e) = neg ∘ expr e
expr (e + e₁) = uncurry add ∘ < expr e , expr e₁ >
expr (e * e₁) = uncurry mul ∘ < expr e , expr e₁ >
expr (e ^ x) = flip pow x ∘ expr e
expr (e >> n) = lift ∘ flip (shift 2≉0) n ∘ lower ∘ expr e
expr (rnd e) = lift ∘ ⌊_⌋ ∘ lower ∘ expr e
expr (fin {ms = ms} f e) = lift ∘ f ∘ lowerFin ms ∘ expr e
expr (asInt e) = lift ∘ 𝕀⇒ℤ ∘ 𝕀.+_ ∘ Fin.toℕ ∘ lower ∘ expr e
expr nil = const _
expr (cons {ts = ts} e e₁) = uncurry (cons′ ts) ∘ < expr e , expr e₁ >
expr (head {ts = ts} e) = head′ ts ∘ expr e
expr (tail {ts = ts} e) = tail′ ts ∘ expr e
expr (call f es) = fun f ∘ < proj₁ , exprs es >
expr (if e then e₁ else e₂) = uncurry (uncurry Bool.if_then_else_) ∘ < < lower ∘ expr e , expr e₁ > , expr e₂ >
exprs [] = const _
exprs (e ∷ []) = expr e
exprs (e ∷ e₁ ∷ es) = < expr e , exprs (e₁ ∷ es) >
ref {Σ = Σ} (state i) = fetch i Σ ∘ proj₁
ref {Γ = Γ} (var i) = fetch i Γ ∘ proj₂
ref [ r ] = (_∷ []) ∘ ref r
ref (unbox r) = Vec.head ∘ ref r
ref (merge r r₁ e) = uncurry (uncurry mergeVec) ∘ < < ref r , ref r₁ > , lower ∘ expr e >
ref (slice r e) = uncurry sliceVec ∘ < ref r , lower ∘ expr e >
ref (cut r e) = uncurry cutVec ∘ < ref r , lower ∘ expr e >
ref (cast eq r) = castVec eq ∘ ref r
ref nil = const _
ref (cons {ts = ts} r r₁) = uncurry (cons′ ts) ∘ < ref r , ref r₁ >
ref (head {ts = ts} r) = head′ ts ∘ ref r
ref (tail {ts = ts} r) = tail′ ts ∘ ref r
locRef {Γ = Γ} (var i) = fetch i Γ ∘ proj₂
locRef [ r ] = (_∷ []) ∘ locRef r
locRef (unbox r) = Vec.head ∘ locRef r
locRef (merge r r₁ e) = uncurry (uncurry mergeVec) ∘ < < locRef r , locRef r₁ > , lower ∘ expr e >
locRef (slice r e) = uncurry sliceVec ∘ < locRef r , lower ∘ expr e >
locRef (cut r e) = uncurry cutVec ∘ < locRef r , lower ∘ expr e >
locRef (cast eq r) = castVec eq ∘ locRef r
locRef nil = const _
locRef (cons {ts = ts} r r₁) = uncurry (cons′ ts) ∘ < locRef r , locRef r₁ >
locRef (head {ts = ts} r) = head′ ts ∘ locRef r
locRef (tail {ts = ts} r) = tail′ ts ∘ locRef r
assign {Σ = Σ} (state i) val σ,γ = < updateAt i Σ val ∘ proj₁ , proj₂ >
assign {Γ = Γ} (var i) val σ,γ = < proj₁ , updateAt i Γ val ∘ proj₂ >
assign [ r ] val σ,γ = assign r (Vec.head val) σ,γ
assign (unbox r) val σ,γ = assign r (val ∷ []) σ,γ
assign (merge r r₁ e) val σ,γ = assign r₁ (cutVec val (lower (expr e σ,γ))) σ,γ ∘ assign r (sliceVec val (lower (expr e σ,γ))) σ,γ
assign (slice r e) val σ,γ = assign r (mergeVec val (cutVec (ref r σ,γ) (lower (expr e σ,γ))) (lower (expr e σ,γ))) σ,γ
assign (cut r e) val σ,γ = assign r (mergeVec (sliceVec (ref r σ,γ) (lower (expr e σ,γ))) val (lower (expr e σ,γ))) σ,γ
assign (cast eq r) val σ,γ = assign r (castVec (sym eq) val) σ,γ
assign nil val σ,γ = id
assign (cons {ts = ts} r r₁) val σ,γ = assign r₁ (tail′ ts val) σ,γ ∘ assign r (head′ ts val) σ,γ
assign (head {ts = ts} r) val σ,γ = assign r (cons′ ts val (ref (tail r) σ,γ)) σ,γ
assign (tail {ts = ts} r) val σ,γ = assign r (cons′ ts (ref (head r) σ,γ) val) σ,γ
locAssign {Γ = Γ} (var i) val σ,γ = updateAt i Γ val ∘ proj₂
locAssign [ r ] val σ,γ = locAssign r (Vec.head val) σ,γ
locAssign (unbox r) val σ,γ = locAssign r (val ∷ []) σ,γ
locAssign (merge r r₁ e) val σ,γ = locAssign r₁ (cutVec val (lower (expr e σ,γ))) σ,γ ∘ < proj₁ , locAssign r (sliceVec val (lower (expr e σ,γ))) σ,γ >
locAssign (slice r e) val σ,γ = locAssign r (mergeVec val (cutVec (locRef r σ,γ) (lower (expr e σ,γ))) (lower (expr e σ,γ))) σ,γ
locAssign (cut r e) val σ,γ = locAssign r (mergeVec (sliceVec (locRef r σ,γ) (lower (expr e σ,γ))) val (lower (expr e σ,γ))) σ,γ
locAssign (cast eq r) val σ,γ = locAssign r (castVec (sym eq) val) σ,γ
locAssign nil val σ,γ = proj₂
locAssign (cons {ts = ts} r r₁) val σ,γ = locAssign r₁ (tail′ ts val) σ,γ ∘ < proj₁ , locAssign r (head′ ts val) σ,γ >
locAssign (head {ts = ts} r) val σ,γ = locAssign r (cons′ ts val (locRef (tail r) σ,γ)) σ,γ
locAssign (tail {ts = ts} r) val σ,γ = locAssign r (cons′ ts (locRef (head r) σ,γ) val) σ,γ
stmt (s ∙ s₁) = stmt s₁ ∘ stmt s
stmt skip = id
stmt (ref ≔ val) = uncurry (uncurry (assign ref)) ∘ < < expr val , id > , id >
stmt {Γ = Γ} (declare e s) = < proj₁ , tail′ Γ ∘ proj₂ > ∘ stmt s ∘ < proj₁ , uncurry (cons′ Γ) ∘ < expr e , proj₂ > >
stmt (invoke p es) = < proc p ∘ < proj₁ , exprs es > , proj₂ >
stmt (if e then s) = uncurry (uncurry Bool.if_then_else_) ∘ < < lower ∘ expr e , stmt s > , id >
stmt (if e then s else s₁) = uncurry (uncurry Bool.if_then_else_) ∘ < < lower ∘ expr e , stmt s > , stmt s₁ >
stmt {Γ = Γ} (for m s) = Vec.foldl _ (flip λ i → (< proj₁ , tail′ Γ ∘ proj₂ > ∘ stmt s ∘ < proj₁ , cons′ Γ (lift i) ∘ proj₂ >) ∘_) id (Vec.allFin m)
locStmt (s ∙ s₁) = locStmt s₁ ∘ < proj₁ , locStmt s >
locStmt skip = proj₂
locStmt (ref ≔ val) = uncurry (uncurry (locAssign ref)) ∘ < < expr val , id > , id >
locStmt {Γ = Γ} (declare e s) = tail′ Γ ∘ locStmt s ∘ < proj₁ , uncurry (cons′ Γ) ∘ < expr e , proj₂ > >
locStmt (if e then s) = uncurry (uncurry Bool.if_then_else_) ∘ < < lower ∘ expr e , locStmt s > , proj₂ >
locStmt (if e then s else s₁) = uncurry (uncurry Bool.if_then_else_) ∘ < < lower ∘ expr e , locStmt s > , locStmt s₁ >
locStmt {Γ = Γ} (for m s) = proj₂ ∘ Vec.foldl _ (flip λ i → (< proj₁ , tail′ Γ ∘ locStmt s > ∘ < proj₁ , cons′ Γ (lift i) ∘ proj₂ >) ∘_) id (Vec.allFin m)
fun {Γ = Γ} (declare e f) = fun f ∘ < proj₁ , uncurry (cons′ Γ) ∘ < expr e , proj₂ > >
fun (s ∙return e) = expr e ∘ < proj₁ , locStmt s >
proc (s ∙end) = proj₁ ∘ stmt s
|