summaryrefslogtreecommitdiff
path: root/src/Obs/NormalForm/Normalise.idr
blob: a95e725e80c14a9fb3e037047c48a2a9176b7512 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
module Obs.NormalForm.Normalise

import Data.Bool
import Data.List
import Data.Nat

import Decidable.Equality

import Obs.Logging
import Obs.NormalForm
import Obs.Substitution
import Obs.Universe

import Text.PrettyPrint.Prettyprinter

%default total

-- Aliases ---------------------------------------------------------------------

public export 0
LogConstructor : Type -> Unsorted.Family Relevance
LogConstructor ann ctx = Logging ann (Constructor ctx)

public export 0
LogNormalForm : Type -> Sorted.Family Relevance
LogNormalForm ann b ctx = Logging ann (NormalForm b ctx)

0
LogDeclForm : Type -> Unsorted.Family Relevance
LogDeclForm ann ctx = Logging ann (DeclForm ctx)

0
LogNormalForm' : Type -> Sorted.Family Relevance
LogNormalForm' ann b ctx = Either (Logging ann (NormalForm b ctx)) (Elem b ctx)

-- Copied and specialised from Obs.Substitution
lift : (ctx : List (r ** Maybe String))
  -> Map ctx' (LogNormalForm' ann) ctx''
  -> Map (map DPair.fst ctx ++ ctx') (LogNormalForm' ann) (map DPair.fst ctx ++ ctx'')
lift [] f = f
lift ((s ** y) :: ctx) f = add (LogNormalForm' ann)
  (Left $ pure $ point y Here)
  (\i => bimap (\t => pure (rename !t There)) There (lift ctx f i))

-- Normalisation ---------------------------------------------------------------

subst' : NormalForm ~|> Hom (LogNormalForm' ann) (LogNormalForm ann)

export
subst1 : {s' : _} -> NormalForm s ctx -> NormalForm s' (s :: ctx) -> LogNormalForm ann s' ctx
subst1 t u = subst' u (add (LogNormalForm' ann) (Left $ pure t) Right)

export
map1 : {s' : _} ->
  NormalForm s (s :: ctx) ->
  NormalForm s' (s :: ctx) ->
  LogNormalForm ann s' (s :: ctx)
map1 t u = subst' u (add (LogNormalForm' ann) (Left $ pure t) (Right . There))

export
MkLambda : {rel, domainRel : _} ->
  (var : Maybe String) ->
  (body : NormalForm rel (domainRel :: ctx)) ->
  NormalForm (function domainRel rel) ctx
MkLambda {rel = Irrelevant} var body = Irrel
MkLambda {rel = Relevant} var body = Cnstr $ Lambda {var, body, domainRel}

export
doApp : {domainRel : _} ->
  (fun : NormalForm (function domainRel codomainRel) ctx) ->
  (arg : NormalForm domainRel ctx) ->
  LogNormalForm ann codomainRel ctx

doApp (Ntrl fun) arg = pure $ Ntrl $ App {argRel = _, fun, arg}
doApp (Cnstr (Lambda {domainRel = domainRel', var, body})) arg = do
  let Yes Refl = decEq domainRel domainRel'
    | No _ => fatal "internal relevance mismatch"

  subst1 arg body
doApp (Cnstr t) arg = inScope "wrong constructor for apply" $ fatal t
doApp Irrel arg = pure Irrel

export
MkPair : {indexRel, elementRel : Relevance}
  -> (first : NormalForm indexRel ctx)
  -> (second : NormalForm elementRel ctx)
  -> NormalForm (pair indexRel elementRel) ctx
MkPair {indexRel = Irrelevant, elementRel = Irrelevant, first, second} = Irrel
MkPair {indexRel = Irrelevant, elementRel = Relevant, first, second} =
  Cnstr $ Pair {indexRel = Irrelevant, elementRel = Relevant, prf = Relevant, first, second}
MkPair {indexRel = Relevant, elementRel, first, second} =
  Cnstr $ Pair {indexRel = Relevant, elementRel, prf = Relevant, first, second}

export
doFst : (firstRel, secondRel : _) ->
  (arg : NormalForm (pair firstRel secondRel) ctx) ->
  LogNormalForm ann firstRel ctx

doFst Irrelevant secondRel arg = pure Irrel
doFst Relevant secondRel (Ntrl arg) = pure $ Ntrl $ First {secondRel, arg}
doFst Relevant secondRel (Cnstr (Pair {indexRel = Relevant, elementRel, prf, first, second})) =
  pure first
doFst Relevant secondRel (Cnstr t) = inScope "wrong constructor for fst" $ fatal t

export
doSnd : (firstRel, secondRel : _) ->
  (arg : NormalForm (pair firstRel secondRel) ctx) ->
  LogNormalForm ann secondRel ctx

doSnd firstRel Irrelevant arg = pure Irrel
doSnd firstRel Relevant arg =
  let arg' : NormalForm Relevant ctx
      arg' = rewrite sym $ pairRelevantRight firstRel in arg
  in case arg' of
  Ntrl arg => pure $ Ntrl $ Second {firstRel, arg}
  Cnstr (Pair {indexRel, elementRel = Relevant, prf, first, second}) => pure second
  Cnstr t => inScope "wrong constructor for snd" $ fatal t

export
doContainer : ContainerTy ctx -> TypeNormalForm ctx
doContainer container =
  Cnstr $ Pi
    { domainSort = container.inputSort
    , codomainSort =
        max (succ container.shapeSort)
            (container.shapeSort ~>
             max (succ container.positionSort) (container.positionSort ~> container.outputSort))
    , domain = MkDecl Nothing container.input
    , codomain = Cnstr $ Sigma
      { indexSort = succ container.shapeSort
      , elementSort = container.shapeSort ~>
                      max (succ container.positionSort)
                          (container.positionSort ~> container.outputSort)
      , index = MkDecl (Just "Shape") (cast container.shapeSort)
      , element = Cnstr $ Pi
        { domainSort = container.shapeSort
        , codomainSort = max (succ container.positionSort)
                             (container.positionSort ~> container.outputSort)
        , domain = MkDecl Nothing (Ntrl $ Var "Shape" Here)
        , codomain = Cnstr $ Sigma
          { indexSort = succ container.positionSort
          , elementSort = container.positionSort ~> container.outputSort
          , index = MkDecl (Just "Position") (cast container.positionSort)
          , element = Cnstr $ Pi
            { domainSort = container.positionSort
            , codomainSort = container.outputSort
            , domain = MkDecl Nothing (Ntrl $ Var "Position" Here)
            , codomain = weaken [_, _, _, _, _] container.output
            }
          }
        }
      }
    }

export
MkContainer : (inputRel, shapeRel : Relevance) ->
  {outputRel : Relevance} ->
  (shape : TypeNormalForm ctx) ->
  (position : TypeNormalForm ctx) ->
  (next : NormalForm outputRel ctx) ->
  LogNormalForm ann Relevant ctx
MkContainer {inputRel, shapeRel, outputRel, shape, position, next} = do
  shape <- doApp (Sorted.weaken [inputRel] shape) (point Nothing Here)
  position <- doApp (weaken [shapeRel, inputRel] position) (point Nothing (There Here))
  position <- doApp position (point Nothing Here)
  next <- doApp (weaken [shapeRel, inputRel] next) (point Nothing (There Here))
  next <- doApp next (point Nothing Here)
  pure $ MkLambda
    { var = Nothing
    , body = MkPair
      { first = shape
      , second = MkLambda
        { var = Nothing
        , body = MkPair
          { first = position
          , second = next
          }
        }
      }
    }

export
doShape : (inputRel : Relevance) ->
  (arg : NormalForm Relevant ctx) ->
  LogNormalForm ann Relevant ctx
doShape inputRel arg =
  let inputIndex : NormalForm inputRel (inputRel :: ctx)
      inputIndex = point Nothing Here
  in do
  inputIndexed <- doApp (weaken [_] arg) inputIndex
  body <- doFst Relevant Relevant inputIndexed

  pure $ MkLambda {var = Nothing, body}

export
doPosition : (inputRel, shapeRel, outputRel : Relevance) ->
  (arg : NormalForm Relevant ctx) ->
  LogNormalForm ann Relevant ctx
doPosition {inputRel, shapeRel, outputRel, arg} =
  let inputIndex : NormalForm inputRel (inputRel :: ctx)
      inputIndex = point Nothing Here
  in
  let shapeIndex : NormalForm shapeRel (shapeRel :: inputRel :: ctx)
      shapeIndex = point Nothing Here
  in do
  inputIndexed <- doApp (weaken [_] arg) inputIndex

  positionNextPair <- doSnd Relevant Relevant inputIndexed
  let positionNextPair = weaken [_] positionNextPair

  shapeIndexed <- doApp positionNextPair shapeIndex
  body <- doFst Relevant outputRel shapeIndexed

  pure $ MkLambda
    { var = Nothing
    , body = MkLambda {var = Nothing, body}
    }

export
doNext : (inputRel, shapeRel, outputRel : Relevance) ->
  (arg : NormalForm Relevant ctx) ->
  LogNormalForm ann outputRel ctx
doNext {inputRel, shapeRel, outputRel, arg} =
  let inputIndex : NormalForm inputRel (inputRel :: ctx)
      inputIndex = point Nothing Here
  in
  let shapeIndex : NormalForm shapeRel (shapeRel :: inputRel :: ctx)
      shapeIndex = point Nothing Here
  in do
  inputIndexed <- doApp (weaken [_] arg) inputIndex

  positionNextPair <- doSnd Relevant Relevant inputIndexed
  let positionNextPair = weaken [_] positionNextPair

  shapeIndexed <- doApp positionNextPair shapeIndex
  body <- doSnd Relevant outputRel shapeIndexed

  pure $ MkLambda
    { var = Nothing
    , body = MkLambda {var = Nothing, body}
    }

export
doSem : (container : ContainerTy ctx) ->
  (predSort : Universe) ->
  (pred : TypeNormalForm (relevance container.outputSort :: ctx)) ->
  (arg : NormalForm Relevant ctx) ->
  LogNormalForm ann Relevant ctx
doSem {container, predSort, pred, arg} = do
  let inputVar = Nothing
  let shapeVar = Nothing
  let positionVar = Nothing

  shape <- doShape {inputRel = relevance container.inputSort, arg}
  let shape = Sorted.weaken [_] shape

  shapeType <- doApp shape (point inputVar Here)
  let shapeIndex = MkDecl shapeVar shapeType

  position <- doPosition
    { inputRel = relevance container.inputSort
    , shapeRel = relevance container.shapeSort
    , outputRel = relevance container.outputSort
    , arg
    }
  let position = Sorted.weaken [_,_] position

  positionType <- doApp position (point inputVar (There Here))
  positionType <- doApp positionType (point shapeVar Here)
  let positionDomain = MkDecl positionVar positionType

  next <- doNext
    { inputRel = relevance container.inputSort
    , shapeRel = relevance container.shapeSort
    , outputRel = relevance container.outputSort
    , arg
    }
  let next = Sorted.weaken [_,_,_] next

  next <- doApp next (point inputVar (There (There Here)))
  next <- doApp next (point shapeVar (There Here))
  next <- doApp next (point positionVar Here)

  let f = add (LogNormalForm' ann) (Left $ pure next) (Right . There . There . There)
  codomain <- subst' pred f

  pure $ MkLambda
    { var = inputVar
    , domainRel = relevance container.inputSort
    , body = Cnstr $ Sigma
      { indexSort = container.shapeSort
      , elementSort = container.positionSort ~> predSort
      , index = shapeIndex
      , element = Cnstr $ Pi
        { domainSort = container.positionSort
        , codomainSort = predSort
        , domain = positionDomain
        , codomain
        }
      }
    }

export
doIf : {rel : _} ->
  (discriminant : NormalForm Relevant ctx) ->
  (true, false : NormalForm rel ctx) ->
  LogNormalForm ann rel ctx
doIf {rel = Irrelevant} discriminant true false = pure Irrel
doIf {rel = Relevant} (Ntrl discriminant) true false = pure $ Ntrl $ If {discriminant, true, false}
doIf {rel = Relevant} (Cnstr True) true false = pure true
doIf {rel = Relevant} (Cnstr False) true false = pure false
doIf {rel = Relevant} (Cnstr t) true false = inScope "wrong constructor for if" $ fatal t

export
doAbsurd : (rel : _) -> NormalForm rel ctx
doAbsurd Irrelevant = Irrel
doAbsurd Relevant = Ntrl Absurd

export
doCast : (rel : _) ->
  (oldType, newType : TypeNormalForm ctx) ->
  (value : NormalForm rel ctx) ->
  LogNormalForm ann rel ctx

doCastHelper : (oldType, newType : Constructor ctx) ->
  (value : NormalForm Relevant ctx) ->
  LogNormalForm ann Relevant ctx
doCastHelper (Universe {s}) (Universe {s = s'}) value = pure value
doCastHelper
  oldType@(Pi {domainSort, codomainSort, domain, codomain})
  newType@(Pi
    { domainSort = domainSort'
    , codomainSort = codomainSort'
    , domain = domain'
    , codomain = codomain'
    })
  value =
  let y : NormalForm (relevance domainSort) (relevance domainSort :: ctx)
      y = point domain.var Here
  in do

  let Yes Refl = decEq (domainSort, codomainSort) (domainSort', codomainSort')
    | No _ => pure $ Ntrl $ CastStuck {oldType, newType, value}

  let domainType = weaken [relevance domainSort] domain.type
  let domainType' = weaken [relevance domainSort] domain'.type

  x <- doCast
    { rel = relevance domainSort
    , oldType = assert_smaller oldType domainType'
    , newType = assert_smaller newType domainType
    , value = y
    }

  codomainType <- map1 x codomain
  codomainType' <- map1 y codomain'

  call <- doApp (weaken [relevance domainSort] value) x
  body <- doCast
    { rel = Relevant
    , oldType = assert_smaller oldType codomainType
    , newType = assert_smaller newType codomainType'
    , value = call
    }

  pure $ Cnstr $ Lambda {domainRel = relevance domainSort, var = Nothing, body}
doCastHelper
  oldType@(Sigma {indexSort = indexSort@(Set k), elementSort, index, element})
  newType@(Sigma
    { indexSort = indexSort'
    , elementSort = elementSort'
    , index = index'
    , element = element'
    })
  value = do
  let Yes Refl = decEq (indexSort, elementSort) (indexSort', elementSort')
    | No _ => pure $ Ntrl $ CastStuck {oldType, newType, value}

  first <- doFst Relevant (relevance elementSort) value
  second <- doSnd Relevant (relevance elementSort) value

  first' <- doCast
    { rel = Relevant
    , oldType = assert_smaller oldType index.type
    , newType = assert_smaller newType index'.type
    , value = first
    }

  elementType <- subst1 first element
  elementType' <- subst1 first' element'

  second' <- doCast
    { rel = relevance elementSort
    , oldType = assert_smaller oldType elementType
    , newType = assert_smaller newType elementType'
    , value = second
    }

  pure $ Cnstr $ Pair
    { indexRel = Relevant
    , elementRel = relevance elementSort
    , prf = Relevant
    , first = first'
    , second = second'
    }
doCastHelper
  oldType@(Sigma {indexSort = Prop, elementSort = elementSort@(Set k), index, element})
  newType@(Sigma
    { indexSort = Prop
    , elementSort = elementSort'
    , index = index'
    , element = element'
    })
  value = do
  let Yes Refl = decEq elementSort elementSort'
    | No _ => pure $ Ntrl $ CastStuck {oldType, newType, value}

  first <- doFst Irrelevant Relevant value
  second <- doSnd Irrelevant Relevant value

  first' <- doCast
    { rel = Irrelevant
    , oldType = assert_smaller oldType index.type
    , newType = assert_smaller newType index'.type
    , value = first
    }

  elementType <- subst1 first element
  elementType' <- subst1 first' element'

  second' <- doCast
    { rel = Relevant
    , oldType = assert_smaller oldType elementType
    , newType = assert_smaller newType elementType'
    , value = second
    }

  pure $ Cnstr $ Pair
    { indexRel = Irrelevant
    , elementRel = Relevant
    , prf = Relevant
    , first = first'
    , second = second'
    }
doCastHelper Bool Bool value = pure value
doCastHelper oldType newType value = pure $ Ntrl $ CastStuck {oldType, newType, value}

doCast Irrelevant oldType newType value = pure Irrel
doCast Relevant (Ntrl oldType) newType value = pure $ Ntrl $ CastL {oldType, newType, value}
doCast Relevant (Cnstr oldType) (Ntrl newType) value =
  pure $ Ntrl $ CastR {oldType, newType, value}
doCast Relevant (Cnstr oldType) (Cnstr newType) value = doCastHelper oldType newType value

export
doEqual : (rel : _) ->
  (type : TypeNormalForm ctx) ->
  (left, right : NormalForm rel ctx) ->
  LogNormalForm ann Relevant ctx

equalHelper : (left, right : Constructor ctx) -> LogNormalForm ann Relevant ctx
equalHelper (Universe {s}) (Universe {s = s'}) = pure (Cnstr Top)
equalHelper
  left@(Pi {domainSort, codomainSort, domain, codomain})
  right@(Pi
    { domainSort = domainSort'
    , codomainSort = codomainSort'
    , domain = domain'
    , codomain = codomain'
    }) =
  let y : NormalForm (relevance domainSort) (relevance domainSort :: Irrelevant :: ctx)
      y = point domain.var Here
  in do

  let Yes Refl = decEq (domainSort, codomainSort) (domainSort', codomainSort')
    | No _ => pure $ Ntrl $ EqualStuck {left, right}

  domainEqual <- doEqual
    { rel = Relevant
    , type = cast domainSort
    , left = assert_smaller right domain'.type
    , right = assert_smaller left domain.type
    }

  let domainType = Sorted.weaken [relevance domainSort, Irrelevant] domain.type
  let domainType' = Sorted.weaken [relevance domainSort, Irrelevant] domain'.type

  x <- doCast
    { rel = relevance domainSort
    , oldType = domainType'
    , newType = domainType
    , value = y
    }

  codomainType <- map1 x (rename codomain (add Elem Here (There . There)))
  codomainType' <- map1 y (rename codomain' (add Elem Here (There . There)))

  codomainEqual <- doEqual
    { rel = Relevant
    , type = cast codomainSort
    , left = assert_smaller left codomainType
    , right = assert_smaller right codomainType'
    }

  let returnElement = Cnstr $ Pi
       { domainSort = domainSort
       , codomainSort = Prop
       , domain = MkDecl Nothing (Sorted.weaken [Irrelevant] domain.type)
       , codomain = codomainEqual
       }

  pure $ Cnstr $ Sigma
    { indexSort = Prop
    , elementSort = Prop
    , index = MkDecl Nothing domainEqual
    , element = returnElement
    }
equalHelper
  left@(Sigma {indexSort, elementSort, index, element})
  right@(Sigma
    { indexSort = indexSort'
    , elementSort = elementSort'
    , index = index'
    , element = element'
    }) =
  let x : NormalForm (relevance indexSort) (relevance indexSort :: Irrelevant :: ctx)
      x = point index.var Here
  in do

  let Yes Refl = decEq (indexSort, elementSort) (indexSort', elementSort')
    | No _ => pure $ Ntrl $ EqualStuck {left, right}

  indexEqual <- doEqual
    { rel = Relevant
    , type = cast indexSort
    , left = assert_smaller left index.type
    , right = assert_smaller right index'.type
    }

  let indexType = Sorted.weaken [relevance indexSort, Irrelevant] index.type
  let indexType' = Sorted.weaken [relevance indexSort, Irrelevant] index'.type

  y <- doCast
    { rel = relevance indexSort
    , oldType = indexType
    , newType = indexType'
    , value = x
    }

  elementType <- map1 x (rename element (add Elem Here (There . There)))
  elementType' <- map1 y (rename element' (add Elem Here (There . There)))

  elementEqual <- doEqual
    { rel = Relevant
    , type = cast elementSort
    , left = assert_smaller left elementType
    , right = assert_smaller right elementType'
    }

  let returnElement = Cnstr $ Pi
       { domainSort = indexSort
       , codomainSort = Prop
       , domain = MkDecl Nothing (Sorted.weaken [Irrelevant] index.type)
       , codomain = elementEqual
       }

  pure $ Cnstr $ Sigma
    { indexSort = Prop
    , elementSort = Prop
    , index = MkDecl Nothing indexEqual
    , element = returnElement
    }
equalHelper Bool Bool = pure (Cnstr Top)
equalHelper left right = pure $ Ntrl $ EqualStuck {left, right}

doEqualType : (left, right : TypeNormalForm ctx) -> LogNormalForm ann Relevant ctx
doEqualType (Ntrl left) right = pure $ Ntrl $ EqualL {left, right}
doEqualType (Cnstr left) (Ntrl right) = pure $ Ntrl $ EqualR {left, right}
doEqualType (Cnstr left) (Cnstr right) = equalHelper left right

doEqual Irrelevant type left right = pure $ Cnstr Top
doEqual Relevant (Ntrl type) left right = pure $ Ntrl $ Equal {type, left, right}
doEqual Relevant (Cnstr (Universe {s = Prop})) left right = do
  let leftToRight = Cnstr $ Pi
        { domainSort = Prop
        , codomainSort = Prop
        , domain = MkDecl Nothing left
        , codomain = weaken [Irrelevant] right
        }
  let rightToLeft = Cnstr $ Pi
        { domainSort = Prop
        , codomainSort = Prop
        , domain = MkDecl Nothing right
        , codomain = weaken [Irrelevant] left
        }
  pure $ Cnstr $ Sigma
    { indexSort = Prop
    , elementSort = Prop
    , index = MkDecl Nothing leftToRight
    , element = Sorted.weaken [Irrelevant] rightToLeft
    }
doEqual Relevant (Cnstr (Universe {s = Set _})) left right = doEqualType left right
doEqual Relevant (Cnstr (Pi {domainSort, codomainSort, domain, codomain})) left right =
  let var : NormalForm (relevance domainSort) (relevance domainSort :: ctx)
      var = point domain.var Here
  in do

  leftApp <- doApp (weaken [relevance domainSort] left) var
  rightApp <- doApp (weaken [relevance domainSort] right) var

  equality <- doEqual
    { rel = Relevant
    , type = codomain
    , left = assert_smaller left leftApp
    , right = assert_smaller right rightApp
    }

  pure $ Cnstr $ Pi {domainSort, codomainSort = Prop, domain, codomain = equality}
doEqual
  Relevant
  (Cnstr (Sigma {indexSort = indexSort@(Set _), elementSort, index, element}))
  left
  right = do
  leftFirst <- doFst Relevant (relevance elementSort) left
  rightFirst <- doFst Relevant (relevance elementSort) right
  leftSecond <- doSnd Relevant (relevance elementSort) left
  rightSecond <- doSnd Relevant (relevance elementSort) right

  leftEquality <- doEqual
    { rel = Relevant
    , type = index.type
    , left = assert_smaller left leftFirst
    , right = assert_smaller right rightFirst
    }

  leftElementType <- subst1 leftFirst element
  rightElementType <- subst1 rightFirst element

  leftSecond <- doCast (relevance elementSort) leftElementType rightElementType leftSecond

  rightEquality <- doEqual
    { rel = relevance elementSort
    , type = rightElementType
    , left = assert_smaller left leftSecond
    , right = assert_smaller right rightSecond
    }

  pure $ Cnstr $ Sigma
    { indexSort = Prop
    , elementSort = Prop
    , index = MkDecl Nothing leftEquality
    , element = Sorted.weaken [Irrelevant] rightEquality
    }
doEqual
  Relevant
  (Cnstr (Sigma {indexSort = Prop, elementSort = elementSort@(Set _), index, element}))
  left
  right = do
  leftFirst <- doFst Irrelevant Relevant left
  rightFirst <- doFst Irrelevant Relevant right
  leftSecond <- doSnd Irrelevant Relevant left
  rightSecond <- doSnd Irrelevant Relevant right

  leftEquality <- doEqual
    { rel = Irrelevant
    , type = index.type
    , left = assert_smaller left leftFirst
    , right = assert_smaller right rightFirst
    }

  leftElementType <- subst1 leftFirst element
  rightElementType <- subst1 rightFirst element

  leftSecond <- doCast Relevant leftElementType rightElementType leftSecond

  rightEquality <- doEqual
    { rel = Relevant
    , type = rightElementType
    , left = assert_smaller left leftSecond
    , right = assert_smaller right rightSecond
    }

  pure $ Cnstr $ Sigma
    { indexSort = Prop
    , elementSort = Prop
    , index = MkDecl Nothing leftEquality
    , element = Sorted.weaken [Irrelevant] rightEquality
    }
doEqual Relevant (Cnstr Bool) left right = do
  whenLeftTrue <- doIf right (Cnstr Top) (Cnstr Bottom)
  whenLeftFalse <- doIf right (Cnstr Bottom) (Cnstr Top)
  doIf left whenLeftTrue whenLeftFalse
doEqual Relevant (Cnstr t) left right = inScope "wrong constructor for equal" $ fatal t

substDecl : DeclForm ~|> Hom (LogNormalForm' ann) (LogDeclForm ann)
substDecl (MkDecl var type) f = pure (MkDecl var !(subst' type f))

substCnstr : Constructor ~|> Hom (LogNormalForm' ann) (LogConstructor ann)
substCnstr (Universe {s}) f = pure (Universe {s})
substCnstr (Pi {domainSort, codomainSort, domain, codomain}) f = do
  domain <- substDecl domain f
  codomain <- subst' codomain (lift [(_ ** domain.var)] f)
  pure (Pi {domainSort, codomainSort, domain, codomain})
substCnstr (Lambda {domainRel, var, body}) f = do
  body <- subst' body (lift [(_ ** var)] f)
  pure (Lambda {domainRel, var, body})
substCnstr (Sigma {indexSort, elementSort, index, element}) f = do
  index <- substDecl index f
  element <- subst' element (lift [(_ ** index.var)] f)
  pure (Sigma {indexSort, elementSort, index, element})
substCnstr (Pair {indexRel, elementRel, prf, first, second}) f = do
  first <- subst' first f
  second <- subst' second f
  pure (Pair {indexRel, elementRel, prf, first, second})
substCnstr Bool f = pure Bool
substCnstr True f = pure True
substCnstr False f = pure False
substCnstr Top f = pure Top
substCnstr Bottom f = pure Bottom

substNtrl : Neutral ~|> Hom (LogNormalForm' ann) (LogNormalForm ann Relevant)
substNtrl (Var {var, i}) f = case f i of
  Left t => t
  Right i => pure $ Ntrl $ Var {var, i}
substNtrl (App {argRel, fun, arg}) f = do
  fun <- substNtrl fun f
  arg <- subst' arg f
  assert_total (doApp fun arg)
substNtrl (First {secondRel, arg}) f = do
  arg <- substNtrl arg f
  doFst Relevant secondRel arg
substNtrl (Second {firstRel, arg}) f = do
  arg <- substNtrl arg f
  let arg = rewrite pairRelevantRight firstRel in arg
  doSnd firstRel Relevant arg
substNtrl (If {discriminant, true, false}) f = do
  discriminant <- substNtrl discriminant f
  true <- subst' true f
  false <- subst' false f
  doIf discriminant true false
substNtrl Absurd f = pure (doAbsurd Relevant)
substNtrl (Equal {type, left, right}) f = do
  type <- substNtrl type f
  left <- subst' left f
  right <- subst' right f
  assert_total (doEqual Relevant type left right)
substNtrl (EqualL {left, right}) f = do
  left <- substNtrl left f
  right <- subst' right f
  assert_total (doEqualType left right)
substNtrl (EqualR {left, right}) f = do
  left <- substCnstr left f
  right <- substNtrl right f
  assert_total (doEqualType (Cnstr left) right)
substNtrl (EqualStuck {left, right}) f = do
  left <- substCnstr left f
  right <- substCnstr right f
  assert_total (doEqualType (Cnstr left) (Cnstr right))
substNtrl (CastL {oldType, newType, value}) f = do
  oldType <- substNtrl oldType f
  newType <- subst' newType f
  value <- subst' value f
  assert_total (doCast Relevant oldType newType value)
substNtrl (CastR {oldType, newType, value}) f = do
  oldType <- substCnstr oldType f
  newType <- substNtrl newType f
  value <- subst' value f
  assert_total (doCast Relevant (Cnstr oldType) newType value)
substNtrl (CastStuck {oldType, newType, value}) f = do
  oldType <- substCnstr oldType f
  newType <- substCnstr newType f
  value <- subst' value f
  assert_total (doCast Relevant (Cnstr oldType) (Cnstr newType) value)

subst' (Ntrl t) f = substNtrl t f
subst' (Cnstr t) f = pure $ Cnstr !(substCnstr t f)
subst' Irrel f = pure Irrel

export
subst : NormalForm ~|> Hom (LogNormalForm ann) (LogNormalForm ann)
subst t f = subst' t (Left . f)

export
strengthen : (ctx' : List Relevance) ->
  Map ctx' (LogNormalForm' ann) ctx ->
  Map (ctx' ++ ctx) (LogNormalForm' ann) ctx
strengthen [] f = Right
strengthen (rel :: ctx) f = add (LogNormalForm' ann) (f Here) (strengthen ctx (f . There))

-- Container Utilities ---------------------------------------------------------

public export
containerSort : (container : ContainerTy ctx) -> Universe
containerSort container =
  container.inputSort ~>
  max (succ container.shapeSort)
      (container.shapeSort ~>
       max (succ container.positionSort) (container.positionSort ~> container.outputSort))

export
matchContainer : (type : TypeNormalForm ctx) -> Logging ann (ContainerTy ctx)
matchContainer type@(Cnstr (Pi
  { domainSort = inputSort
  , codomainSort = inputCodomainSort
  , domain = MkDecl _ input
  , codomain = Cnstr (Sigma
    { indexSort = succShapeSort@(Set _)
    , elementSort = shapeElementSort
    , index = MkDecl _ (Cnstr (Universe shapeSort))
    , element = Cnstr (Pi
      { domainSort = shapeSort'
      , codomainSort = shapeCodomainSort
      , domain = MkDecl _ (Ntrl (Var _ Here))
      , codomain = Cnstr (Sigma
        { indexSort = succPositionSort@(Set _)
        , elementSort = positionElementSort
        , index = MkDecl _ (Cnstr (Universe positionSort))
        , element = Cnstr (Pi
          { domainSort = positionSort'
          , codomainSort = outputSort
          , domain = MkDecl _ (Ntrl (Var _ Here))
          , codomain = output'
          })
        })
      })
    })
  })) = do
  let Yes Refl = decEq
                   ( inputCodomainSort
                   , succShapeSort
                   , shapeElementSort
                   , shapeSort'
                   , shapeCodomainSort
                   , succPositionSort
                   , positionElementSort
                   , positionSort')
                   ( max (succ shapeSort)
                         (shapeSort ~> max (succ positionSort) (positionSort ~> outputSort))
                   , succ shapeSort
                   , shapeSort ~> max (succ positionSort) (positionSort ~> outputSort)
                   , shapeSort
                   , max (succ positionSort) (positionSort ~> outputSort)
                   , succ positionSort
                   , positionSort ~> outputSort
                   , positionSort)
    | No _ => typeMismatch (pretty "container") (pretty type)

  output <- subst' output' $
    strengthen [_, _, _, _, _] $
    const $ Left $ typeMismatch (pretty "container") (pretty type)
  pure (MkContainerTy {inputSort, shapeSort, positionSort, outputSort, input, output})
matchContainer type = typeMismatch (pretty "container") (pretty type)

export
containerShapeType : ContainerTy ctx -> TypeNormalForm ctx
containerShapeType container =
  Cnstr $ Pi
    { domainSort = container.inputSort
    , codomainSort = succ container.shapeSort
    , domain = MkDecl Nothing container.input
    , codomain = cast container.shapeSort
    }

export
containerPositionType : (container : ContainerTy ctx) ->
  (shape : TypeNormalForm (relevance container.inputSort :: ctx)) ->
  TypeNormalForm ctx
containerPositionType container shape =
  Cnstr $ Pi
    { domainSort = container.inputSort
    , codomainSort = container.shapeSort ~> succ container.positionSort
    , domain = MkDecl Nothing container.input
    , codomain = Cnstr $ Pi
      { domainSort = container.shapeSort
      , codomainSort = succ container.positionSort
      , domain = MkDecl Nothing shape
      , codomain = cast container.positionSort
      }
    }

export
containerNextType : (container : ContainerTy ctx) ->
  (shape : TypeNormalForm (relevance container.inputSort :: ctx)) ->
  (position :
    TypeNormalForm (relevance container.shapeSort :: relevance container.inputSort :: ctx)) ->
  TypeNormalForm ctx
containerNextType container shape position =
  Cnstr $ Pi
    { domainSort = container.inputSort
    , codomainSort = container.shapeSort ~> container.positionSort ~> container.outputSort
    , domain = MkDecl Nothing container.input
    , codomain = Cnstr $ Pi
      { domainSort = container.shapeSort
      , codomainSort = container.positionSort ~> container.outputSort
      , domain = MkDecl Nothing shape
      , codomain = Cnstr $ Pi
        { domainSort = container.positionSort
        , codomainSort = container.outputSort
        , domain = MkDecl Nothing position
        , codomain = weaken [_, _, _] container.output
        }
      }
    }

export
containerSemType : (container : ContainerTy ctx) -> (predSort : Universe) -> TypeNormalForm ctx
containerSemType container predSort =
  Cnstr $ Pi
    { domainSort = container.inputSort
    , codomainSort = succ (max container.shapeSort (container.positionSort ~> predSort))
    , domain = MkDecl Nothing container.input
    , codomain = cast $ max container.shapeSort (container.positionSort ~> predSort)
    }