1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
|
module Obs.NormalForm.Normalise
import Data.Bool
import Data.Nat
import Decidable.Equality
import Obs.Logging
import Obs.NormalForm
import Obs.Substitution
import Obs.Universe
import Text.PrettyPrint.Prettyprinter
%default total
-- Aliases ---------------------------------------------------------------------
public export 0
LogConstructor : Type -> Unsorted.Family Relevance
LogConstructor ann ctx = Logging ann (Constructor ctx)
public export 0
LogNormalForm : Type -> Sorted.Family Relevance
LogNormalForm ann b ctx = Logging ann (NormalForm b ctx)
0
LogDeclForm : Type -> Unsorted.Family Relevance
LogDeclForm ann ctx = Logging ann (DeclForm ctx)
0
LogNormalForm' : Type -> Sorted.Family Relevance
LogNormalForm' ann b ctx = Either (Logging ann (NormalForm b ctx)) (Elem b ctx)
-- Copied and specialised from Obs.Substitution
lift : (ctx : List (r ** Maybe String))
-> Map ctx' (LogNormalForm' ann) ctx''
-> Map (map DPair.fst ctx ++ ctx') (LogNormalForm' ann) (map DPair.fst ctx ++ ctx'')
lift [] f = f
lift ((s ** y) :: ctx) f = add (LogNormalForm' ann)
(Left $ pure $ point y Here)
(\i => bimap (\t => pure (rename !t There)) There (lift ctx f i))
-- Normalisation ---------------------------------------------------------------
subst' : NormalForm ~|> Hom (LogNormalForm' ann) (LogNormalForm ann)
export
subst1 : {s' : _} -> NormalForm s ctx -> NormalForm s' (s :: ctx) -> LogNormalForm ann s' ctx
subst1 t u = subst' u (add (LogNormalForm' ann) (Left $ pure t) Right)
export
map1 : {s' : _} ->
NormalForm s (s :: ctx) ->
NormalForm s' (s :: ctx) ->
LogNormalForm ann s' (s :: ctx)
map1 t u = subst' u (add (LogNormalForm' ann) (Left $ pure t) (Right . There))
export
doApp : {domainRel : _} ->
(fun : NormalForm (function domainRel codomainRel) ctx) ->
(arg : NormalForm domainRel ctx) ->
LogNormalForm ann codomainRel ctx
doApp (Ntrl fun) arg = pure $ Ntrl $ App {argRel = _, fun, arg}
doApp (Cnstr (Lambda {domainRel = domainRel', var, body})) arg = do
let Yes Refl = decEq domainRel domainRel'
| No _ => fatal "internal relevance mismatch"
subst1 arg body
doApp (Cnstr t) arg = inScope "wrong constructor for apply" $ fatal t
doApp Irrel arg = pure Irrel
export
doFst : (firstRel, secondRel : _) ->
(arg : NormalForm (pair firstRel secondRel) ctx) ->
LogNormalForm ann firstRel ctx
doFst Irrelevant secondRel arg = pure Irrel
doFst Relevant secondRel (Ntrl arg) = pure $ Ntrl $ First {secondRel, arg}
doFst Relevant secondRel (Cnstr (Pair {indexRel = Relevant, elementRel, prf, first, second})) =
pure first
doFst Relevant secondRel (Cnstr t) = inScope "wrong constructor for fst" $ fatal t
export
doSnd : (firstRel, secondRel : _) ->
(arg : NormalForm (pair firstRel secondRel) ctx) ->
LogNormalForm ann secondRel ctx
doSnd firstRel Irrelevant arg = pure Irrel
doSnd firstRel Relevant arg =
let arg' : NormalForm Relevant ctx
arg' = rewrite sym $ pairRelevantRight firstRel in arg
in case arg' of
Ntrl arg => pure $ Ntrl $ Second {firstRel, arg}
Cnstr (Pair {indexRel, elementRel = Relevant, prf, first, second}) => pure second
Cnstr t => inScope "wrong constructor for snd" $ fatal t
export
doIf : {rel : _} ->
(discriminant : NormalForm Relevant ctx) ->
(true, false : NormalForm rel ctx) ->
LogNormalForm ann rel ctx
doIf {rel = Irrelevant} discriminant true false = pure Irrel
doIf {rel = Relevant} (Ntrl discriminant) true false = pure $ Ntrl $ If {discriminant, true, false}
doIf {rel = Relevant} (Cnstr True) true false = pure true
doIf {rel = Relevant} (Cnstr False) true false = pure false
doIf {rel = Relevant} (Cnstr t) true false = inScope "wrong constructor for if" $ fatal t
export
doAbsurd : (rel : _) -> NormalForm rel ctx
doAbsurd Irrelevant = Irrel
doAbsurd Relevant = Ntrl Absurd
export
doCast : (rel : _) ->
(oldType, newType : TypeNormalForm ctx) ->
(value : NormalForm rel ctx) ->
LogNormalForm ann rel ctx
doCastHelper : (oldType, newType : Constructor ctx) ->
(value : NormalForm Relevant ctx) ->
LogNormalForm ann Relevant ctx
doCastHelper (Universe {s}) (Universe {s = s'}) value = pure value
doCastHelper
oldType@(Pi {domainSort, codomainSort, domain, codomain})
newType@(Pi
{ domainSort = domainSort'
, codomainSort = codomainSort'
, domain = domain'
, codomain = codomain'
})
value =
let y : NormalForm (relevance domainSort) (relevance domainSort :: ctx)
y = point domain.var Here
in do
let Yes Refl = decEq (domainSort, codomainSort) (domainSort', codomainSort')
| No _ => pure $ Ntrl $ CastStuck {oldType, newType, value}
let domainType = weaken [relevance domainSort] domain.type
let domainType' = weaken [relevance domainSort] domain'.type
x <- doCast
{ rel = relevance domainSort
, oldType = assert_smaller oldType domainType'
, newType = assert_smaller newType domainType
, value = y
}
codomainType <- map1 x codomain
codomainType' <- map1 y codomain'
call <- doApp (weaken [relevance domainSort] value) x
body <- doCast
{ rel = Relevant
, oldType = assert_smaller oldType codomainType
, newType = assert_smaller newType codomainType'
, value = call
}
pure $ Cnstr $ Lambda {domainRel = relevance domainSort, var = Nothing, body}
doCastHelper
oldType@(Sigma {indexSort = indexSort@(Set k), elementSort, index, element})
newType@(Sigma
{ indexSort = indexSort'
, elementSort = elementSort'
, index = index'
, element = element'
})
value = do
let Yes Refl = decEq (indexSort, elementSort) (indexSort', elementSort')
| No _ => pure $ Ntrl $ CastStuck {oldType, newType, value}
first <- doFst Relevant (relevance elementSort) value
second <- doSnd Relevant (relevance elementSort) value
first' <- doCast
{ rel = Relevant
, oldType = assert_smaller oldType index.type
, newType = assert_smaller newType index'.type
, value = first
}
elementType <- subst1 first element
elementType' <- subst1 first' element'
second' <- doCast
{ rel = relevance elementSort
, oldType = assert_smaller oldType elementType
, newType = assert_smaller newType elementType'
, value = second
}
pure $ Cnstr $ Pair
{ indexRel = Relevant
, elementRel = relevance elementSort
, prf = Relevant
, first = first'
, second = second'
}
doCastHelper
oldType@(Sigma {indexSort = Prop, elementSort = elementSort@(Set k), index, element})
newType@(Sigma
{ indexSort = Prop
, elementSort = elementSort'
, index = index'
, element = element'
})
value = do
let Yes Refl = decEq elementSort elementSort'
| No _ => pure $ Ntrl $ CastStuck {oldType, newType, value}
first <- doFst Irrelevant Relevant value
second <- doSnd Irrelevant Relevant value
first' <- doCast
{ rel = Irrelevant
, oldType = assert_smaller oldType index.type
, newType = assert_smaller newType index'.type
, value = first
}
elementType <- subst1 first element
elementType' <- subst1 first' element'
second' <- doCast
{ rel = Relevant
, oldType = assert_smaller oldType elementType
, newType = assert_smaller newType elementType'
, value = second
}
pure $ Cnstr $ Pair
{ indexRel = Irrelevant
, elementRel = Relevant
, prf = Relevant
, first = first'
, second = second'
}
doCastHelper Bool Bool value = pure value
doCastHelper oldType newType value = pure $ Ntrl $ CastStuck {oldType, newType, value}
doCast Irrelevant oldType newType value = pure Irrel
doCast Relevant (Ntrl oldType) newType value = pure $ Ntrl $ CastL {oldType, newType, value}
doCast Relevant (Cnstr oldType) (Ntrl newType) value =
pure $ Ntrl $ CastR {oldType, newType, value}
doCast Relevant (Cnstr oldType) (Cnstr newType) value = doCastHelper oldType newType value
export
doEqual : (rel : _) ->
(type : TypeNormalForm ctx) ->
(left, right : NormalForm rel ctx) ->
LogNormalForm ann Relevant ctx
equalHelper : (left, right : Constructor ctx) -> LogNormalForm ann Relevant ctx
equalHelper (Universe {s}) (Universe {s = s'}) = pure (Cnstr Top)
equalHelper
left@(Pi {domainSort, codomainSort, domain, codomain})
right@(Pi
{ domainSort = domainSort'
, codomainSort = codomainSort'
, domain = domain'
, codomain = codomain'
}) =
let y : NormalForm (relevance domainSort) (relevance domainSort :: Irrelevant :: ctx)
y = point domain.var Here
in do
let Yes Refl = decEq (domainSort, codomainSort) (domainSort', codomainSort')
| No _ => pure $ Ntrl $ EqualStuck {left, right}
domainEqual <- doEqual
{ rel = Relevant
, type = cast domainSort
, left = assert_smaller right domain'.type
, right = assert_smaller left domain.type
}
let domainType = Sorted.weaken [relevance domainSort, Irrelevant] domain.type
let domainType' = Sorted.weaken [relevance domainSort, Irrelevant] domain'.type
x <- doCast
{ rel = relevance domainSort
, oldType = domainType'
, newType = domainType
, value = y
}
codomainType <- map1 x (rename codomain (add Elem Here (There . There)))
codomainType' <- map1 y (rename codomain' (add Elem Here (There . There)))
codomainEqual <- doEqual
{ rel = Relevant
, type = cast codomainSort
, left = assert_smaller left codomainType
, right = assert_smaller right codomainType'
}
let returnElement = Cnstr $ Pi
{ domainSort = domainSort
, codomainSort = Prop
, domain = MkDecl Nothing (Sorted.weaken [Irrelevant] domain.type)
, codomain = codomainEqual
}
pure $ Cnstr $ Sigma
{ indexSort = Prop
, elementSort = Prop
, index = MkDecl Nothing domainEqual
, element = returnElement
}
equalHelper
left@(Sigma {indexSort, elementSort, index, element})
right@(Sigma
{ indexSort = indexSort'
, elementSort = elementSort'
, index = index'
, element = element'
}) =
let x : NormalForm (relevance indexSort) (relevance indexSort :: Irrelevant :: ctx)
x = point index.var Here
in do
let Yes Refl = decEq (indexSort, elementSort) (indexSort', elementSort')
| No _ => pure $ Ntrl $ EqualStuck {left, right}
indexEqual <- doEqual
{ rel = Relevant
, type = cast indexSort
, left = assert_smaller left index.type
, right = assert_smaller right index'.type
}
let indexType = Sorted.weaken [relevance indexSort, Irrelevant] index.type
let indexType' = Sorted.weaken [relevance indexSort, Irrelevant] index'.type
y <- doCast
{ rel = relevance indexSort
, oldType = indexType
, newType = indexType'
, value = x
}
elementType <- map1 x (rename element (add Elem Here (There . There)))
elementType' <- map1 y (rename element' (add Elem Here (There . There)))
elementEqual <- doEqual
{ rel = Relevant
, type = cast elementSort
, left = assert_smaller left elementType
, right = assert_smaller right elementType'
}
let returnElement = Cnstr $ Pi
{ domainSort = indexSort
, codomainSort = Prop
, domain = MkDecl Nothing (Sorted.weaken [Irrelevant] index.type)
, codomain = elementEqual
}
pure $ Cnstr $ Sigma
{ indexSort = Prop
, elementSort = Prop
, index = MkDecl Nothing indexEqual
, element = returnElement
}
equalHelper Bool Bool = pure (Cnstr Top)
equalHelper left right = pure $ Ntrl $ EqualStuck {left, right}
doEqualType : (left, right : TypeNormalForm ctx) -> LogNormalForm ann Relevant ctx
doEqualType (Ntrl left) right = pure $ Ntrl $ EqualL {left, right}
doEqualType (Cnstr left) (Ntrl right) = pure $ Ntrl $ EqualR {left, right}
doEqualType (Cnstr left) (Cnstr right) = equalHelper left right
doEqual Irrelevant type left right = pure $ Cnstr Top
doEqual Relevant (Ntrl type) left right = pure $ Ntrl $ Equal {type, left, right}
doEqual Relevant (Cnstr (Universe {s = Prop})) left right = do
let leftToRight = Cnstr $ Pi
{ domainSort = Prop
, codomainSort = Prop
, domain = MkDecl Nothing left
, codomain = weaken [Irrelevant] right
}
let rightToLeft = Cnstr $ Pi
{ domainSort = Prop
, codomainSort = Prop
, domain = MkDecl Nothing right
, codomain = weaken [Irrelevant] left
}
pure $ Cnstr $ Sigma
{ indexSort = Prop
, elementSort = Prop
, index = MkDecl Nothing leftToRight
, element = Sorted.weaken [Irrelevant] rightToLeft
}
doEqual Relevant (Cnstr (Universe {s = Set _})) left right = doEqualType left right
doEqual Relevant (Cnstr (Pi {domainSort, codomainSort, domain, codomain})) left right =
let var : NormalForm (relevance domainSort) (relevance domainSort :: ctx)
var = point domain.var Here
in do
leftApp <- doApp (weaken [relevance domainSort] left) var
rightApp <- doApp (weaken [relevance domainSort] right) var
equality <- doEqual
{ rel = Relevant
, type = codomain
, left = assert_smaller left leftApp
, right = assert_smaller right rightApp
}
pure $ Cnstr $ Pi {domainSort, codomainSort = Prop, domain, codomain = equality}
doEqual
Relevant
(Cnstr (Sigma {indexSort = indexSort@(Set _), elementSort, index, element}))
left
right = do
leftFirst <- doFst Relevant (relevance elementSort) left
rightFirst <- doFst Relevant (relevance elementSort) right
leftSecond <- doSnd Relevant (relevance elementSort) left
rightSecond <- doSnd Relevant (relevance elementSort) right
leftEquality <- doEqual
{ rel = Relevant
, type = index.type
, left = assert_smaller left leftFirst
, right = assert_smaller right rightFirst
}
leftElementType <- subst1 leftFirst element
rightElementType <- subst1 rightFirst element
leftSecond <- doCast (relevance elementSort) leftElementType rightElementType leftSecond
rightEquality <- doEqual
{ rel = relevance elementSort
, type = rightElementType
, left = assert_smaller left leftSecond
, right = assert_smaller right rightSecond
}
pure $ Cnstr $ Sigma
{ indexSort = Prop
, elementSort = Prop
, index = MkDecl Nothing leftEquality
, element = Sorted.weaken [Irrelevant] rightEquality
}
doEqual
Relevant
(Cnstr (Sigma {indexSort = Prop, elementSort = elementSort@(Set _), index, element}))
left
right = do
leftFirst <- doFst Irrelevant Relevant left
rightFirst <- doFst Irrelevant Relevant right
leftSecond <- doSnd Irrelevant Relevant left
rightSecond <- doSnd Irrelevant Relevant right
leftEquality <- doEqual
{ rel = Irrelevant
, type = index.type
, left = assert_smaller left leftFirst
, right = assert_smaller right rightFirst
}
leftElementType <- subst1 leftFirst element
rightElementType <- subst1 rightFirst element
leftSecond <- doCast Relevant leftElementType rightElementType leftSecond
rightEquality <- doEqual
{ rel = Relevant
, type = rightElementType
, left = assert_smaller left leftSecond
, right = assert_smaller right rightSecond
}
pure $ Cnstr $ Sigma
{ indexSort = Prop
, elementSort = Prop
, index = MkDecl Nothing leftEquality
, element = Sorted.weaken [Irrelevant] rightEquality
}
doEqual Relevant (Cnstr Bool) left right = do
whenLeftTrue <- doIf right (Cnstr Top) (Cnstr Bottom)
whenLeftFalse <- doIf right (Cnstr Bottom) (Cnstr Top)
doIf left whenLeftTrue whenLeftFalse
doEqual Relevant (Cnstr t) left right = inScope "wrong constructor for equal" $ fatal t
substDecl : DeclForm ~|> Hom (LogNormalForm' ann) (LogDeclForm ann)
substDecl (MkDecl var type) f = pure (MkDecl var !(subst' type f))
substCnstr : Constructor ~|> Hom (LogNormalForm' ann) (LogConstructor ann)
substCnstr (Universe {s}) f = pure (Universe {s})
substCnstr (Pi {domainSort, codomainSort, domain, codomain}) f = do
domain <- substDecl domain f
codomain <- subst' codomain (lift [(_ ** domain.var)] f)
pure (Pi {domainSort, codomainSort, domain, codomain})
substCnstr (Lambda {domainRel, var, body}) f = do
body <- subst' body (lift [(_ ** var)] f)
pure (Lambda {domainRel, var, body})
substCnstr (Sigma {indexSort, elementSort, index, element}) f = do
index <- substDecl index f
element <- subst' element (lift [(_ ** index.var)] f)
pure (Sigma {indexSort, elementSort, index, element})
substCnstr (Pair {indexRel, elementRel, prf, first, second}) f = do
first <- subst' first f
second <- subst' second f
pure (Pair {indexRel, elementRel, prf, first, second})
substCnstr Bool f = pure Bool
substCnstr True f = pure True
substCnstr False f = pure False
substCnstr Top f = pure Top
substCnstr Bottom f = pure Bottom
substNtrl : Neutral ~|> Hom (LogNormalForm' ann) (LogNormalForm ann Relevant)
substNtrl (Var {var, i}) f = case f i of
Left t => t
Right i => pure $ Ntrl $ Var {var, i}
substNtrl (App {argRel, fun, arg}) f = do
fun <- substNtrl fun f
arg <- subst' arg f
assert_total (doApp fun arg)
substNtrl (First {secondRel, arg}) f = do
arg <- substNtrl arg f
doFst Relevant secondRel arg
substNtrl (Second {firstRel, arg}) f = do
arg <- substNtrl arg f
let arg = rewrite pairRelevantRight firstRel in arg
doSnd firstRel Relevant arg
substNtrl (If {discriminant, true, false}) f = do
discriminant <- substNtrl discriminant f
true <- subst' true f
false <- subst' false f
doIf discriminant true false
substNtrl Absurd f = pure (doAbsurd Relevant)
substNtrl (Equal {type, left, right}) f = do
type <- substNtrl type f
left <- subst' left f
right <- subst' right f
assert_total (doEqual Relevant type left right)
substNtrl (EqualL {left, right}) f = do
left <- substNtrl left f
right <- subst' right f
assert_total (doEqualType left right)
substNtrl (EqualR {left, right}) f = do
left <- substCnstr left f
right <- substNtrl right f
assert_total (doEqualType (Cnstr left) right)
substNtrl (EqualStuck {left, right}) f = do
left <- substCnstr left f
right <- substCnstr right f
assert_total (doEqualType (Cnstr left) (Cnstr right))
substNtrl (CastL {oldType, newType, value}) f = do
oldType <- substNtrl oldType f
newType <- subst' newType f
value <- subst' value f
assert_total (doCast Relevant oldType newType value)
substNtrl (CastR {oldType, newType, value}) f = do
oldType <- substCnstr oldType f
newType <- substNtrl newType f
value <- subst' value f
assert_total (doCast Relevant (Cnstr oldType) newType value)
substNtrl (CastStuck {oldType, newType, value}) f = do
oldType <- substCnstr oldType f
newType <- substCnstr newType f
value <- subst' value f
assert_total (doCast Relevant (Cnstr oldType) (Cnstr newType) value)
subst' (Ntrl t) f = substNtrl t f
subst' (Cnstr t) f = pure $ Cnstr !(substCnstr t f)
subst' Irrel f = pure Irrel
export
subst : NormalForm ~|> Hom (LogNormalForm ann) (LogNormalForm ann)
subst t f = subst' t (Left . f)
|