summaryrefslogtreecommitdiff
path: root/src/Soat/FirstOrder/Algebra.idr
blob: 876958f4bea4b35f727c7a3de652bc01ff5b6322 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
module Soat.FirstOrder.Algebra

import public Data.Product
import Data.Setoid.Indexed

import Soat.FirstOrder.Signature

import Syntax.PreorderReasoning.Setoid

%default total

infix 5 ~>

public export 0
algebraOver : (sig : Signature) -> (U : sig.T -> Type) -> Type
algebraOver sig x = {t : sig.T} -> (op : Op sig t) -> x ^ op.arity -> x t

public export
record RawAlgebra (0 sig : Signature) where
  constructor MkRawAlgebra
  0 U : sig.T -> Type
  sem : sig `algebraOver` U

public export
record RawSetoidAlgebra (0 sig : Signature) where
  constructor MkRawSetoidAlgebra
  raw        : RawAlgebra sig
  0 relation : (t : sig.T) -> Rel (raw.U t)

public export
record IsAlgebra (0 sig : Signature) (0 a : RawAlgebra sig) where
  constructor MkIsAlgebra
  equivalence : IndexedEquivalence sig.T a.U
  semCong     : {t : sig.T} -> (op : Op sig t) -> {tms, tms' : a.U ^ op.arity}
    -> Pointwise equivalence.relation tms tms'
    -> equivalence.relation t (a.sem op tms) (a.sem op tms')

public export
record Algebra (0 sig : Signature) where
  constructor MkAlgebra
  raw        : RawAlgebra sig
  algebra    : IsAlgebra sig raw

public export 0
(.relation) : (0 a : Algebra sig) -> (t : sig.T) -> Rel (a.raw.U t)
(.relation) a = a.algebra.equivalence.relation

public export
(.setoid) : Algebra sig -> IndexedSetoid sig.T
(.setoid) a = MkIndexedSetoid a.raw.U a.algebra.equivalence

public export
(.rawSetoid) : Algebra sig -> RawSetoidAlgebra sig
(.rawSetoid) a = MkRawSetoidAlgebra a.raw a.relation

public export
record (~>) {0 sig : Signature} (a, b : Algebra sig)
  where
  constructor MkHomomorphism
  func    : a.setoid ~> b.setoid
  semHomo : {t : sig.T} -> (op : Op sig t) -> (tms : a.raw.U ^ op.arity)
    -> b.relation t (func.H t (a.raw.sem op tms)) (b.raw.sem op (map func.H tms))

public export
id : {a : Algebra sig} -> a ~> a
id = MkHomomorphism
  { func    = id a.setoid
  , semHomo = \op, tms =>
    reflect (index a.setoid _) $
    sym $
    cong (a.raw.sem op) $
    mapId tms
  }

public export
(.) : {a, b, c : Algebra sig} -> b ~> c -> a ~> b -> a ~> c
(.) f g = MkHomomorphism
  { func    = f.func . g.func
  , semHomo = \op, tms =>
    CalcWith (index c.setoid _) $
    |~ f.func.H _ (g.func.H _ (a.raw.sem op tms))
    ~~ f.func.H _ (b.raw.sem op (map g.func.H tms))   ...(f.func.homomorphic _ _ _ $ g.semHomo op tms)
    ~~ c.raw.sem op (map f.func.H (map g.func.H tms)) ...(f.semHomo op $ map g.func.H tms)
    ~~ c.raw.sem op (map ((f.func . g.func).H) tms)   .=<(cong (c.raw.sem op) $ mapComp tms)
  }