blob: 6e39612d005adf8b56d67bb8a37b3222ebb8ecb6 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
module Soat.FirstOrder.Algebra
import Data.Morphism.Indexed
import Data.Setoid.Indexed
import public Soat.Data.Product
import Soat.FirstOrder.Signature
%default total
%hide Control.Relation.Equivalence
infix 5 ~>
public export 0
algebraOver : (sig : Signature) -> (U : sig.T -> Type) -> Type
algebraOver sig x = {t : sig.T} -> (op : Op sig t) -> x ^ op.arity -> x t
public export
record RawAlgebra (0 sig : Signature) where
constructor MkRawAlgebra
0 U : sig.T -> Type
sem : sig `algebraOver` U
public export
record RawSetoidAlgebra (0 sig : Signature) where
constructor MkRawSetoidAlgebra
raw : RawAlgebra sig
0 relation : IRel raw.U
public export
record IsAlgebra (0 sig : Signature) (0 a : RawAlgebra sig) where
constructor MkIsAlgebra
0 relation : IRel a.U
equivalence : IEquivalence a.U relation
semCong : {t : sig.T} -> (op : Op sig t) -> {tms, tms' : a.U ^ op.arity}
-> Pointwise relation tms tms' -> relation t (a.sem op tms) (a.sem op tms')
public export
record Algebra (0 sig : Signature) where
constructor MkAlgebra
raw : RawAlgebra sig
algebra : IsAlgebra sig raw
public export 0
(.relation) : (0 a : Algebra sig) -> IRel a.raw.U
(.relation) a = a.algebra.relation
public export
(.setoid) : Algebra sig -> ISetoid sig.T
(.setoid) a = MkISetoid a.raw.U a.relation a.algebra.equivalence
public export
(.rawSetoid) : Algebra sig -> RawSetoidAlgebra sig
(.rawSetoid) a = MkRawSetoidAlgebra a.raw a.relation
public export
record (~>) {0 sig : Signature} (a, b : Algebra sig)
where
constructor MkHomomorphism
func : (t : sig.T) -> a.raw.U t -> b.raw.U t
cong : (t : sig.T) -> {tm, tm' : a.raw.U t}
-> a.relation t tm tm' -> b.relation t (func t tm) (func t tm')
semHomo : {t : sig.T} -> (op : Op sig t) -> (tms : a.raw.U ^ op.arity)
-> b.relation t (func t (a.raw.sem op tms)) (b.raw.sem op (map func tms))
public export
id : {a : Algebra sig} -> a ~> a
id = MkHomomorphism
{ func = \_ => id
, cong = \_ => id
, semHomo = \op, tms =>
(a.algebra.equivalence _).equalImpliesEq $
sym $
cong (a.raw.sem op) $
mapId tms
}
public export
(.) : {a, b, c : Algebra sig} -> b ~> c -> a ~> b -> a ~> c
(.) f g = MkHomomorphism
{ func = \t => f.func t . g.func t
, cong = \t => f.cong t . g.cong t
, semHomo = \op, tms =>
(c.algebra.equivalence _).transitive
(f.cong _ $ g.semHomo op tms) $
(c.algebra.equivalence _).transitive
(f.semHomo op (map g.func tms)) $
(c.algebra.equivalence _).equalImpliesEq $
sym $
cong (c.raw.sem op) $
mapComp tms
}
|