1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
|
module Soat.SecondOrder.Algebra.Lift
import Data.List.Elem
import Data.Morphism.Indexed
import Data.Setoid.Indexed
import Soat.Data.Product
import Soat.Data.Sublist
import Soat.FirstOrder.Algebra
import Soat.FirstOrder.Algebra.Coproduct
import Soat.FirstOrder.Algebra.FreeExtension
import Soat.FirstOrder.Term
import Soat.SecondOrder.Algebra
import Soat.SecondOrder.Signature.Lift
import Syntax.PreorderReasoning.Setoid
%default total
public export
project : SecondOrder.Algebra.RawAlgebra (lift sig) -> (ctx : List sig.T)
-> FirstOrder.Algebra.RawAlgebra sig
project a ctx = MakeRawAlgebra
(flip a.U ctx)
(\op => a.sem ctx (MkOp (Op op.op)) . wrap (MkPair []))
public export
projectIsAlgebra : {a : _} -> forall rel . SecondOrder.Algebra.IsAlgebra (lift sig) a rel
-> (ctx : List sig.T)
-> FirstOrder.Algebra.IsAlgebra sig (project a ctx) (\t => rel (t, ctx))
projectIsAlgebra a ctx = MkIsAlgebra
(\t => a.equivalence (t, ctx))
(\op => a.semCong ctx _ . wrapIntro)
public export
projectAlgebra : SecondOrder.Algebra.Algebra (lift sig) -> (ctx : List sig.T)
-> FirstOrder.Algebra.Algebra sig
projectAlgebra a ctx = MkAlgebra _ _ (projectIsAlgebra a.algebra ctx)
public export
projectIsHomo : {a, b : SecondOrder.Algebra.Algebra (lift sig)} -> {f : _} -> IsHomomorphism a b f
-> (ctx : List sig.T)
-> IsHomomorphism {sig = sig} (projectAlgebra a ctx) (projectAlgebra b ctx) (\t => f t ctx)
projectIsHomo {b = b} homo ctx = MkIsHomomorphism
{ cong = \t => homo.cong t ctx
, semHomo = \op, tms => CalcWith (b.setoid.index _) $
|~ f _ ctx (a.raw.sem ctx (MkOp (Op op.op)) (wrap (MkPair []) tms))
~~ b.raw.sem ctx (MkOp (Op op.op)) (map (extendFunc f ctx) (wrap (MkPair []) tms))
...(homo.semHomo ctx (MkOp (Op op.op)) (wrap (MkPair []) tms))
~~ b.raw.sem ctx (MkOp (Op op.op)) (wrap (MkPair []) (map (\t => f t ctx) tms))
.=.(cong (b.raw.sem ctx (MkOp (Op op.op))) $ mapWrap (MkPair []) {f = extendFunc f ctx} tms)
}
public export
projectHomo : {a, b : SecondOrder.Algebra.Algebra (lift sig)} -> Homomorphism a b
-> (ctx : _) -> Homomorphism {sig = sig} (projectAlgebra a ctx) (projectAlgebra b ctx)
projectHomo f ctx = MkHomomorphism (\t => f.func t ctx) (projectIsHomo f.homo ctx)
public export
(.renameHomo) : (a : SecondOrder.Algebra.Algebra (lift sig)) -> {ctx, ctx' : _}
-> (f : ctx `Sublist` ctx')
-> FirstOrder.Algebra.Homomorphism {sig = sig} (projectAlgebra a ctx) (projectAlgebra a ctx')
(.renameHomo) a f = MkHomomorphism
{ func = \t => a.raw.rename t f
, homo = MkIsHomomorphism
{ cong = \t => a.algebra.renameCong t f
, semHomo = \op, tms => CalcWith (a.setoid.index _) $
|~ a.raw.rename _ f (a.raw.sem _ (MkOp (Op op.op)) (wrap (MkPair []) tms))
~~ a.raw.sem _ (MkOp (Op op.op)) (map (\ty => a.raw.rename (snd ty) (reflexive {x = fst ty} ++ f)) (wrap (MkPair []) tms))
...(a.algebra.semNat f (MkOp (Op op.op)) (wrap (MkPair []) tms))
~~ a.raw.sem _ (MkOp (Op op.op)) (wrap (MkPair []) (map (\t => a.raw.rename t f) tms))
...(a.algebra.semCong _ (MkOp (Op op.op)) $
CalcWith (pwSetoid (a.setoid.reindex (\ty => (snd ty, fst ty ++ _))) _) $
|~ map (\ty => a.raw.rename (snd ty) (reflexive {x = fst ty} ++ f)) (wrap (MkPair []) tms)
~~ wrap (MkPair []) (map (\t => a.raw.rename t (reflexive {x = []} ++ f)) tms)
.=.(mapWrap (MkPair []) tms)
~~ wrap (MkPair []) (map (\t => a.raw.rename t f) tms)
.=.(cong (wrap (MkPair [])) $
pwEqImpliesEqual $
mapIntro'' (\t, tm, _, Refl => cong (\f => a.raw.rename t f tm) $ uncurryCurry f) $
equalImpliesPwEq Refl))
}
}
public export
(.substHomo1) : (a : SecondOrder.Algebra.Algebra (lift sig)) -> (ctx : List sig.T)
-> {ctx' : List sig.T} -> (tms : (\t => a.raw.U t ctx) ^ ctx')
-> FirstOrder.Algebra.Homomorphism {sig = sig} (projectAlgebra a ctx') (projectAlgebra a ctx)
(.substHomo1) a ctx tms = MkHomomorphism
{ func = \t, tm => a.raw.subst t ctx tm tms
, homo = MkIsHomomorphism
{ cong = \t, eq => a.algebra.substCong t ctx eq $ pwRefl (\_ => (a.algebra.equivalence _).refl)
, semHomo = \op, tms' => CalcWith (a.setoid.index _) $
|~ a.raw.subst _ ctx (a.raw.sem ctx' (MkOp (Op op.op)) (wrap (MkPair []) tms')) tms
~~ a.raw.sem ctx (MkOp (Op op.op)) (map (a.raw.extendSubst ctx tms) (wrap (MkPair []) tms'))
...(a.algebra.substCompat ctx (MkOp (Op op.op)) (wrap (MkPair []) tms') tms)
~~ a.raw.sem ctx (MkOp (Op op.op)) (wrap (MkPair []) (map (\t, tm => a.raw.subst t ctx tm tms) tms'))
...(a.algebra.semCong ctx (MkOp (Op op.op)) $
CalcWith (pwSetoid (a.setoid.reindex (\ty => (snd ty, fst ty ++ ctx))) _) $
|~ map (a.raw.extendSubst ctx tms) (wrap (MkPair []) tms')
~~ wrap (MkPair []) (map (\t, tm => a.raw.subst t ctx tm (map (\t => a.raw.rename t ([] {ys = []} ++ reflexive)) tms)) tms')
.=.(mapWrap (MkPair []) tms')
~~ wrap (MkPair []) (map (\t, tm => a.raw.subst t ctx tm tms) tms')
...(wrapIntro $
mapIntro' (\t, eq =>
a.algebra.substCong t ctx eq $
CalcWith (pwSetoid (a.setoidAt _) _) $
|~ map (\t => a.raw.rename t ([] {ys = []} ++ reflexive)) tms
~~ map (\t => a.raw.rename t reflexive) tms
.=.(pwEqImpliesEqual $
mapIntro' (\t => cong2 (a.raw.rename t) $ uncurryCurry reflexive) $
equalImpliesPwEq Refl)
~~ map (\t => id) tms
...(mapIntro' (\t, Refl => a.algebra.renameId t ctx _) $
equalImpliesPwEq Refl)
~~ tms
.=.(mapId tms)) $
pwRefl (\t => (a.algebra.equivalence _).refl)))
}
}
indexFunc : {x : ISetoid a} -> (tms : x.U ^ ts) -> IFunction (isetoid (flip Elem ts)) x
indexFunc tms = MkIFunction
(\_ => index tms)
(\_ => (x.equivalence _).equalImpliesEq . cong (index tms))
public export
Initial : (0 sig : _) -> SecondOrder.Algebra.RawAlgebra (lift sig)
Initial sig = MakeRawAlgebra
(\t, ctx => Term sig (flip Elem ctx) t)
(\t, f => free (\_ => curry f) t)
(\_, (MkOp (Op op)) => Call (MkOp op) . unwrap (MkPair []))
Done
(\t, _, tm, tms => bindTerm {a = Free _} (\_ => index tms) t tm)
public export
InitialIsAlgebra : (0 sig : _)
-> SecondOrder.Algebra.IsAlgebra
(lift sig)
(Initial sig)
(\(t, ctx) => (~=~) {sig = sig} {v = flip Elem ctx} (\_ => Equal) t)
InitialIsAlgebra sig = MkIsAlgebra
{ equivalence = \(t, ctx) => tmRelEq (\_ => equiv) t
, renameCong = \t, f => freeCong (ifunc (\_ => curry f)) t
, semCong = \_ , (MkOp (Op op)) => Call' (MkOp op) . unwrapIntro
, substCong = \_, _, eq, eqs => bindTermCong'
{a = FreeAlgebra (isetoid (flip Elem _))}
(\t, Refl => index eqs _)
_
eq
, renameId = \t, ctx, tm =>
tmRelSym (\_ => MkSymmetric symmetric) $
freeUnique (ifunc (\_ => curry reflexive)) idHomo (\i => Done' $ sym $ curryUncurry id i) $
tm
, renameComp = \t, f, g, tm =>
tmRelSym (\_ => MkSymmetric symmetric) $
freeUnique
(ifunc (\_ => curry (transitive g f)))
(compHomo (freeHomo (ifunc (\_ => curry f))) (freeHomo (ifunc (\_ => curry g))))
(\i => Done' $ sym $ curryUncurry (curry f . curry g) i) $
tm
, semNat = \f, (MkOp (Op op)), tms =>
Call' (MkOp op) $
CalcWith (pwSetoid (FreeAlgebra (isetoid (flip Elem _))).setoid _) $
|~ bindTerms {a = Free _} (\_ => Done . curry f) _ (unwrap (MkPair []) tms)
~~ map (free (\_ => curry f)) (unwrap (MkPair []) tms)
.=.(bindTermsIsMap {a = Free _} _ _)
~~ map (free (\_ => curry (reflexive {x = []} ++ f))) (unwrap (MkPair []) tms)
..<(mapIntro' (\t =>
freeCong'
{rel = \_ => Equal}
{u = isetoid (flip Elem _)}
(\_, Refl => curryUncurry (curry f) _)
_) $
tmsRelRefl (\_ => MkReflexive reflexive) (unwrap (MkPair []) tms))
~~ unwrap (MkPair []) (map (\ty => free (\_ => curry (reflexive {x = fst ty} ++ f)) (snd ty)) tms)
.=.(mapUnwrap (MkPair []) tms)
, varNat = \_, _ => Done' Refl
, substNat = \t, f, tm, tms =>
bindUnique
{a = FreeAlgebra (isetoid (flip Elem _))}
(indexFunc _)
(compHomo
(freeHomo (ifunc (\_ => curry f)))
(bindHomo (indexFunc tms)))
(\i =>
tmRelReflexive (\_ => MkReflexive reflexive) $
sym $
indexMap tms i)
tm
, substExnat = \t, ctx, f, tm, tms =>
bindUnique
{a = FreeAlgebra (isetoid (flip Elem _))}
(indexFunc _)
(compHomo
(bindHomo (indexFunc tms))
(freeHomo (ifunc (\_ => curry f))))
(\i =>
tmRelReflexive (\_ => MkReflexive reflexive) $
sym $
indexShuffle f i)
tm
, substComm = \t, ctx, tm, tms, tms' =>
bindUnique
{a = FreeAlgebra (isetoid (flip Elem _))}
(indexFunc _)
(compHomo
(bindHomo (indexFunc tms'))
(bindHomo (indexFunc tms)))
(\i =>
tmRelReflexive (\_ => MkReflexive reflexive) $
sym $
indexMap tms i)
tm
, substVarL = \_, _, _ => tmRelRefl (\_ => MkReflexive reflexive) _
, substVarR = \t, ctx, tm =>
tmRelSym (\_ => MkSymmetric symmetric) $
bindUnique
{a = FreeAlgebra (isetoid (flip Elem _))}
(indexFunc _)
idHomo
(\i =>
tmRelReflexive (\_ => MkReflexive reflexive) $
sym $
indexTabulate Done i)
tm
, substCompat = \ctx, (MkOp (Op op)), tms, tms' =>
Call' (MkOp op) $
CalcWith (pwSetoid (FreeAlgebra (isetoid (flip Elem _))).setoid _) $
|~ bindTerms {a = Free _} (\_ => index tms') _ (unwrap (MkPair []) tms)
~~ map (bindTerm {a = Free _} (\_ => index tms')) (unwrap (MkPair []) tms)
.=.(bindTermsIsMap {a = Free _} _ _)
~~ map (\t => (Initial sig).extendSubst ctx tms' ([], t)) (unwrap (MkPair []) tms)
..<(mapIntro' (\t => bindTermCong'
{rel = \_ => Equal}
{a = FreeAlgebra (isetoid (flip Elem _))}
(\t, Refl => CalcWith ((FreeAlgebra (isetoid (flip Elem _))).setoid.index _) $
|~ index (map (free (\_ => curry ([] {ys = []} ++ reflexive))) tms') _
~~ free (\_ => curry ([] {ys = []} ++ reflexive)) _ (index tms' _)
.=.(indexMap tms' _)
~~ index tms' _
..<(freeUnique
(ifunc (\_ => curry ([] {ys = []} ++ reflexive)))
idHomo
(\i => Done' $ sym $ trans (curryUncurry _ i) (curryUncurry id i))
(index tms' _)))
_) $
tmsRelRefl (\_ => MkReflexive reflexive) $
unwrap (MkPair []) tms)
~~ unwrap (MkPair []) (map ((Initial sig).extendSubst ctx tms') tms)
.=.(mapUnwrap (MkPair []) tms)
}
public export
InitialAlgebra : (0 sig : _) -> SecondOrder.Algebra.Algebra (lift sig)
InitialAlgebra sig = MkAlgebra (Initial sig) _ (InitialIsAlgebra sig)
public export
ProjectInitialIsFree : (0 sig : _) -> (ctx : List sig.T)
-> Isomorphism {sig = sig}
(FreeAlgebra (isetoid (flip Elem ctx)))
(projectAlgebra (InitialAlgebra sig) ctx)
ProjectInitialIsFree sig ctx = MkIsomorphism
{ to = MkHomomorphism
{ func = \_ => id
, homo = MkIsHomomorphism
{ cong = \_ => id
, semHomo = \(MkOp op), ts =>
Call' (MkOp op) $
tmsRelReflexive (\_ => MkReflexive Refl) $
sym $
trans (unwrapWrap (extend (Initial sig).U ctx) _) (mapId ts)
}
}
, from = MkHomomorphism
{ func = \_ => id
, homo = MkIsHomomorphism
{ cong = \_ => id
, semHomo = \(MkOp op), ts =>
Call' (MkOp op) $
tmsRelReflexive (\_ => MkReflexive Refl) $
trans (unwrapWrap (extend (Initial sig).U ctx) ts) (sym $ mapId ts)
}
}
, fromTo = \tm => tmRelRefl (\_ => MkReflexive Refl) tm
, toFrom = \tm => tmRelRefl (\_ => MkReflexive Refl) tm
}
public export
fromInitial : (a : RawAlgebra (lift sig))
-> (t : _) -> (ctx : _) -> (Initial sig).U t ctx -> a.U t ctx
fromInitial a t ctx = bindTerm {a = project a ctx} (\_ => a.var) t
public export
fromInitialIsHomo : (a : SecondOrder.Algebra.Algebra (lift sig))
-> IsHomomorphism (InitialAlgebra sig) a (fromInitial a.raw)
fromInitialIsHomo a = MkIsHomomorphism
{ cong = \t, ctx => bindTermCong {a = projectAlgebra a ctx} (a.varFunc ctx) t
, renameHomo = \t, f => bindUnique'
{v = isetoid (flip Elem _)}
{a = projectAlgebra a _}
(compHomo (bindHomo (a.varFunc _)) (freeHomo (ifunc (\_ => curry f))))
(compHomo (a.renameHomo f) (bindHomo (a.varFunc _)))
(\i => (a.algebra.equivalence _).symmetric $ a.algebra.varNat f i)
, semHomo = \ctx, (MkOp (Op op)), tms =>
a.algebra.semCong ctx (MkOp (Op op)) $
CalcWith (pwSetoid (a.setoid.reindex (\ty => (snd ty, fst ty ++ ctx))) _) $
|~ wrap (MkPair []) (bindTerms {a = project a.raw ctx} (\_ => a.raw.var) _ (unwrap (MkPair []) tms))
~~ wrap (MkPair []) (map (\t => fromInitial a.raw t ctx) (unwrap (MkPair []) tms))
.=.(cong (wrap _) $ bindTermsIsMap {a = project a.raw ctx} _ _)
~~ wrap (MkPair []) (unwrap (MkPair []) (map (extendFunc (fromInitial a.raw) ctx) tms))
.=.(cong (wrap _) $ mapUnwrap (MkPair []) tms)
~~ map (extendFunc (fromInitial a.raw) ctx) tms
.=.(wrapUnwrap _)
, varHomo = \_ => (a.algebra.equivalence _).reflexive
, substHomo = \t, ctx, tm, tms =>
bindUnique'
{v = isetoid (flip Elem _)}
{a = projectAlgebra a _}
(compHomo
(bindHomo (a.varFunc _))
(bindHomo (indexFunc tms)))
(compHomo
(a.substHomo1 ctx _) (bindHomo (a.varFunc _)))
(\i => CalcWith (a.setoid.index _) $
|~ bindTerm {a = project a.raw _} (\_ => a.raw.var) _ (index tms i)
~~ index (map (bindTerm {a = project a.raw _} (\_ => a.raw.var)) tms) i
.=<(indexMap {f = bindTerm {a = project a.raw _} (\_ => a.raw.var)} tms i)
~~ a.raw.subst _ ctx (a.raw.var i) (map (bindTerm {a = project a.raw _} (\_ => a.raw.var)) tms)
..<(a.algebra.substVarL ctx i _))
tm
}
public export
fromInitialHomo : (a : SecondOrder.Algebra.Algebra (lift sig))
-> Homomorphism (InitialAlgebra sig) a
fromInitialHomo a = MkHomomorphism (fromInitial a.raw) (fromInitialIsHomo a)
public export
fromInitialUnique : {a : SecondOrder.Algebra.Algebra (lift sig)}
-> (f : Homomorphism (InitialAlgebra sig) a)
-> (t : sig.T) -> (ctx : List sig.T) -> (tm : Term sig (flip Elem ctx) t)
-> a.relation (t, ctx) (f.func t ctx tm) (fromInitial a.raw t ctx tm)
fromInitialUnique {sig = sig} {a = a} f t ctx = bindUnique
{v = isetoid (flip Elem _)}
{a = projectAlgebra a ctx}
(a.varFunc ctx)
(compHomo (projectHomo f ctx) (ProjectInitialIsFree sig ctx).to)
f.homo.varHomo
public export
FreeExtension : RawAlgebra sig -> RawAlgebra (lift sig)
FreeExtension a = MakeRawAlgebra
{ U = \t, ctx => (FreeExtension a (flip Elem ctx)).U t
, rename = \t, f => extend (\_ => curry f) t
, sem = \ctx, (MkOp (Op op)) => Call (MkOp op) . unwrap (MkPair [])
, var = Done . Right . Done
, subst = \t, ctx, tm, tms =>
coproduct
{z = FreeExtension a (flip Elem _)}
(\_ => Done . Left)
(bindTerm {a = FreeExtension a (flip Elem _)} (\_ => index tms))
t
tm
}
public export
FreeExtensionAlgebra : Algebra sig -> Algebra (lift sig)
FreeExtensionAlgebra a = MkAlgebra
{ raw = FreeExtension a.raw
, relation = \(t, ctx) => (FreeExtensionAlgebra a (isetoid (flip Elem ctx))).relation t
, algebra = MkIsAlgebra
{ equivalence = \(t, ctx) => (FreeExtensionAlgebra a (isetoid (flip Elem ctx))).algebra.equivalence t
, renameCong = \t, f => extendCong (ifunc (\_ => curry f)) t
, semCong = \_ , (MkOp (Op op)) => Call (MkOp op) . unwrapIntro
, substCong = \t, ctx, eq, eqs => coproductCong' {z = FreeExtensionAlgebra a (isetoid (flip Elem ctx))}
(injectLHomo {y = FreeAlgebra (isetoid (flip Elem ctx))})
(injectLHomo {y = FreeAlgebra (isetoid (flip Elem ctx))})
(bindHomo (indexFunc _))
(bindHomo (indexFunc _))
(\_ => DoneL)
(bindTermCong' {a = FreeExtensionAlgebra a (isetoid (flip Elem _))} (\_, Refl => index eqs _))
t
eq
, renameId = \t, ctx, tm =>
(((FreeExtensionAlgebra a (isetoid (flip Elem _)))).algebra.equivalence _).symmetric $
extendUnique
{ v = isetoid (flip Elem _)
, u = isetoid (flip Elem _)
, f = ifunc ?f -- (\_ => curry reflexive)
, g = idHomo
, congL = ?congL
, congR = ?congR
, tm = ?tm
}
-- extendUnique (ifunc (\_ => curry reflexive)) idHomo ?congL ?congR tm
, renameComp = \t, f, g, tm => ?renameComp
, semNat = \f, (MkOp (Op op)), tms => Call (MkOp op) $ ?semNat
, varNat = \f, i => (((FreeExtensionAlgebra a (isetoid (flip Elem _)))).algebra.equivalence _).reflexive
, substNat = \t, f, tm, tms => ?substNat
, substExnat = \t, ctx, f, tm, tms => ?substExnat
, substComm = \t, ctx, tm, tms, tms' => ?substComm
, substVarL = \ctx, i, tms => ?substVarL
, substVarR = \t, ctx, tm => ?substVarR
, substCompat = \ctx, (MkOp (Op op)), tms, tms' => Call (MkOp op) $ ?substCompat
}
}
public export
ProjectFreeExtensionIsOriginal : (a : FirstOrder.Algebra.Algebra sig)
-> Isomorphism (projectAlgebra (FreeExtensionAlgebra a) []) a
public export
FreeExtensionIsFree : (a : Algebra sig) -> (b : Algebra (lift sig))
-> Isomorphism (projectAlgebra b []) a
-> Homomorphism (FreeExtensionAlgebra a) b
-- -- public export
-- -- FreeExtension : RawAlgebra sig -> RawAlgebra (lift sig)
-- -- FreeExtension a = MakeRawAlgebra
-- -- { U = \t, ctx => (Coproduct a (Free (flip Elem ctx))).U t
-- -- , rename = \t, f => coproduct
-- -- {z = Coproduct a (Free (flip Elem _))}
-- -- (\_ => Done . Left)
-- -- (\t => Done . Right . (Initial sig).rename t f)
-- -- t
-- -- , sem = \ctx, (MkOp (Op op)) => Call (MkOp op) . unwrap (MkPair [])
-- -- , var = Done . Right . Done
-- -- , subst = \t, ctx, tm, tms => coproduct
-- -- {z = Coproduct a (Free (flip Elem _))}
-- -- (\_ => Done . Left)
-- -- (\_ => bindTerm {a = Coproduct a (Free (flip Elem ctx))} (\_ => index tms))
-- -- t
-- -- tm
-- -- }
-- -- public export 0
-- -- FreeExtensionRelation : (algebra : FirstOrder.Algebra.IsAlgebra sig a rel)
-- -- -> IRel (uncurry (FreeExtension a).U)
-- -- FreeExtensionRelation algebra (t, ctx) =
-- -- (CoproductAlgebra (MkAlgebra _ _ algebra) (FreeAlgebra (isetoid (flip Elem ctx)))).relation t
-- -- public export
-- -- FreeExtensionIsAlgebra : {a : RawAlgebra sig} -> forall rel . (algebra : IsAlgebra sig a rel)
-- -- -> IsAlgebra (lift sig) (FreeExtension a) (FreeExtensionRelation algebra)
-- -- FreeExtensionIsAlgebra algebra = MkIsAlgebra
-- -- { equivalence = \(t, ctx) => ?equivalence
-- -- , renameCong = \t, f => coproductCong
-- -- (injectLHomo (MkAlgebra _ _ algebra) (FreeAlgebra (isetoid (flip Elem _))))
-- -- (compHomo (injectRHomo a ?y) ?g)
-- -- -- (compHomo
-- -- -- (injectRHomo (MkAlgebra _ _ algebra) (FreeAlgebra (isetoid (flip Elem _))))
-- -- -- ((InitialAlgebra sig).renameHomo f))
-- -- t
-- -- , semCong = \ctx, (MkOp (Op op)) => Call (MkOp op) . unwrapIntro
-- -- , substCong = \t, ctx, eq, eqs => coproductCong'
-- -- (injectLHomo (MkAlgebra _ _ algebra) (FreeAlgebra (isetoid (flip Elem _))))
-- -- (injectLHomo (MkAlgebra _ _ algebra) (FreeAlgebra (isetoid (flip Elem _))))
-- -- (bindHomo (indexFunc _ _))
-- -- (bindHomo (indexFunc _ _))
-- -- (\_ => DoneL)
-- -- ?rhs -- (bindTermCong' (\_ => index ?eqseqs))
-- -- _
-- -- ?eq
-- -- , renameId = ?renameId
-- -- , renameComp = ?renameComp
-- -- , semNat = ?semNat
-- -- , varNat = ?varNat
-- -- , substNat = ?substNat
-- -- , substExnat = ?substExnat
-- -- , substComm = ?substComm
-- -- , substVarL = ?substVarL
-- -- , substVarR = ?substVarR
-- -- , substCompat = ?substCompat
-- -- }
-- -- public export
-- -- FreeExtensionAlgebra : Algebra sig -> Algebra (lift sig)
-- -- FreeExtensionAlgebra a = MkAlgebra _ _ $ FreeExtensionIsAlgebra a.algebra
|