diff options
author | Greg Brown <greg.brown01@ed.ac.uk> | 2024-11-15 15:44:30 +0000 |
---|---|---|
committer | Greg Brown <greg.brown01@ed.ac.uk> | 2024-11-15 15:44:30 +0000 |
commit | 3caa95a139538bb07c74847ca3aba2603a03c502 (patch) | |
tree | afa588ecffb2efd05b1202c7ce5ae6005c86b8d2 /src/Inky/Data/SnocList | |
parent | 865dc549baf613e45e2f79036d54850a483fa509 (diff) |
Add compilation to scheme.
Extract parser as an independent project.
Diffstat (limited to 'src/Inky/Data/SnocList')
-rw-r--r-- | src/Inky/Data/SnocList/Elem.idr | 116 | ||||
-rw-r--r-- | src/Inky/Data/SnocList/Quantifiers.idr | 44 | ||||
-rw-r--r-- | src/Inky/Data/SnocList/Thinning.idr | 228 | ||||
-rw-r--r-- | src/Inky/Data/SnocList/Var.idr | 90 |
4 files changed, 0 insertions, 478 deletions
diff --git a/src/Inky/Data/SnocList/Elem.idr b/src/Inky/Data/SnocList/Elem.idr deleted file mode 100644 index c1e69f6..0000000 --- a/src/Inky/Data/SnocList/Elem.idr +++ /dev/null @@ -1,116 +0,0 @@ -module Inky.Data.SnocList.Elem - -import public Data.SnocList.Elem - -import Data.DPair -import Data.Nat -import Data.Singleton -import Inky.Decidable -import Inky.Decidable.Maybe -import Inky.Data.Assoc -import Inky.Data.List -import Inky.Data.SnocList - -export -Uninhabited (Here {sx, x} ~=~ There {sx = sy, x = z, y} i) where - uninhabited Refl impossible - -export -Uninhabited (There {sx = sy, x = z, y} i ~=~ Here {sx, x}) where - uninhabited Refl impossible - -export -thereCong : - {0 i : Elem x sx} -> {0 j : Elem y sx} -> i = j -> - There {y = z} i = There {y = z} j -thereCong Refl = Refl - -export -toNatCong : {0 i : Elem x sx} -> {0 j : Elem y sx} -> i = j -> elemToNat i = elemToNat j -toNatCong Refl = Refl - -export -thereInjective : - {0 i : Elem x sx} -> {0 j : Elem y sx} -> There {y = z} i = There {y = z} j -> - i = j -thereInjective Refl = Refl - -export -toNatInjective : {i : Elem x sx} -> {j : Elem y sx} -> (0 _ : elemToNat i = elemToNat j) -> i = j -toNatInjective {i = Here} {j = Here} prf = Refl -toNatInjective {i = There i} {j = There j} prf with (toNatInjective {i} {j} $ injective prf) - toNatInjective {i = There i} {j = There .(i)} prf | Refl = Refl - --- Decidable Equality ----------------------------------------------------------- - -public export -reflectEq : (i : Elem x sx) -> (j : Elem y sx) -> (i = j) `When` (elemToNat i == elemToNat j) -reflectEq Here Here = Refl -reflectEq Here (There j) = absurd -reflectEq (There i) Here = absurd -reflectEq (There i) (There j) = mapWhen thereCong thereInjective $ reflectEq i j - -public export -decEq : (i : Elem x sx) -> (j : Elem y sx) -> Dec' (i = j) -decEq i j = (elemToNat i == elemToNat j) `Because` reflectEq i j - --- Weakening ------------------------------------------------------------------- - -public export -wknL : Elem x sx -> LengthOf sy -> Elem x (sx ++ sy) -wknL pos Z = pos -wknL pos (S len) = There (wknL pos len) - -public export -wknR : Elem x sx -> Elem x (sy ++ sx) -wknR Here = Here -wknR (There pos) = There (wknR pos) - -public export -split : LengthOf sy -> Elem x (sx ++ sy) -> Either (Elem x sx) (Elem x sy) -split Z pos = Left pos -split (S len) Here = Right Here -split (S len) (There pos) = mapSnd There $ split len pos - -public export -wknL' : Elem x sx -> LengthOf xs -> Elem x (sx <>< xs) -wknL' i Z = i -wknL' i (S len) = wknL' (There i) len - --- Lookup ---------------------------------------------------------------------- - -export -nameOf : {sx : SnocList a} -> Elem x sx -> Singleton x -nameOf Here = Val x -nameOf (There pos) = nameOf pos - --- Search ---------------------------------------------------------------------- - -export -lookup : DecEq' a => (x : a) -> (sx : SnocList a) -> Maybe (Elem x sx) -lookup x [<] = Nothing -lookup x (sx :< y) = - case decEq x y of - True `Because` Refl => Just Here - False `Because` _ => There <$> lookup x sx - -public export -decLookup : (n : String) -> (sx : SnocList (Assoc a)) -> DecWhen a (\x => Elem (n :- x) sx) -decLookup n [<] = Nothing `Because` (\_ => absurd) -decLookup n (sx :< (k :- x)) = - map (maybe x id) leftToRight rightToLeft $ - first (decEq n k) (decLookup n sx) - where - leftToRight : - forall n. (m : Maybe a) -> - maybe (n = k) (\y => Elem (n :- y) sx) m -> - Elem (n :- maybe x Basics.id m) (sx :< (k :- x)) - leftToRight Nothing Refl = Here - leftToRight (Just _) prf = There prf - - rightToLeft : - forall n. - (Not (n = k), (y : a) -> Not (Elem (n :- y) sx)) -> - (y : a) -> Not (Elem (n :- y) (sx :< (k :- x))) - rightToLeft (neq, contra) _ Here = neq Refl - rightToLeft (neq, contra) y (There i) = contra y i diff --git a/src/Inky/Data/SnocList/Quantifiers.idr b/src/Inky/Data/SnocList/Quantifiers.idr deleted file mode 100644 index 886c4e4..0000000 --- a/src/Inky/Data/SnocList/Quantifiers.idr +++ /dev/null @@ -1,44 +0,0 @@ -module Inky.Data.SnocList.Quantifiers - -import public Data.SnocList.Quantifiers - -import Data.List.Quantifiers -import Inky.Data.SnocList -import Inky.Data.SnocList.Elem -import Inky.Decidable - -public export -(<><) : All p xs -> All p sx -> All p (xs <>< sx) -sxp <>< [] = sxp -sxp <>< (px :: pxs) = (sxp :< px) <>< pxs - -public export -head : All p (sx :< x) -> p x -head (prfs :< px) = px - -public export -tail : All p (sx :< x) -> All p sx -tail (prfs :< px) = prfs - -public export -HSnocList : SnocList Type -> Type -HSnocList = All id - -public export -all : - ((x : a) -> LazyEither (p x) (q x)) -> - (sx : SnocList a) -> LazyEither (All p sx) (Any q sx) -all f [<] = True `Because` [<] -all f (sx :< x) = - map (\prfs => snd prfs :< fst prfs) (either Here There) $ - both (f x) (all f sx) - -public export -tabulate : LengthOf sx -> (forall x. Elem x sx -> p x) -> All p sx -tabulate Z f = [<] -tabulate (S len) f = tabulate len (f . There) :< f Here - -public export -data Pairwise : (a -> a -> Type) -> SnocList a -> Type where - Lin : Pairwise r [<] - (:<) : Pairwise r sx -> All (flip r x) sx -> Pairwise r (sx :< x) diff --git a/src/Inky/Data/SnocList/Thinning.idr b/src/Inky/Data/SnocList/Thinning.idr deleted file mode 100644 index 60666d2..0000000 --- a/src/Inky/Data/SnocList/Thinning.idr +++ /dev/null @@ -1,228 +0,0 @@ -module Inky.Data.SnocList.Thinning - -import Data.DPair -import Data.Nat -import Inky.Data.List -import Inky.Data.SnocList -import Inky.Data.SnocList.Var -import Inky.Data.SnocList.Quantifiers -import Inky.Decidable.Maybe - --------------------------------------------------------------------------------- --- Thinnings ------------------------------------------------------------------- --------------------------------------------------------------------------------- - -public export -data Thins : SnocList a -> SnocList a -> Type where - Id : sx `Thins` sx - Drop : sx `Thins` sy -> sx `Thins` sy :< x - Keep : sx `Thins` sy -> sx :< x `Thins` sy :< x - -%name Thins f, g, h - --- Basics - -public export -indexPos : (f : sx `Thins` sy) -> (pos : Elem x sx) -> Elem x sy -indexPos Id pos = pos -indexPos (Drop f) pos = There (indexPos f pos) -indexPos (Keep f) Here = Here -indexPos (Keep f) (There pos) = There (indexPos f pos) - -public export -index : (f : sx `Thins` sy) -> Var sx -> Var sy -index f i = toVar (indexPos f i.pos) - -public export -(.) : sy `Thins` sz -> sx `Thins` sy -> sx `Thins` sz -Id . g = g -Drop f . g = Drop (f . g) -Keep f . Id = Keep f -Keep f . Drop g = Drop (f . g) -Keep f . Keep g = Keep (f . g) - --- Basic properties - -export -indexPosInjective : - (f : sx `Thins` sy) -> {i : Elem x sx} -> {j : Elem y sx} -> - (0 _ : elemToNat (indexPos f i) = elemToNat (indexPos f j)) -> i = j -indexPosInjective Id prf = toNatInjective prf -indexPosInjective (Drop f) prf = indexPosInjective f (injective prf) -indexPosInjective (Keep f) {i = Here} {j = Here} prf = Refl -indexPosInjective (Keep f) {i = There i} {j = There j} prf = - thereCong (indexPosInjective f $ injective prf) - -export -indexPosComp : - (f : sy `Thins` sz) -> (g : sx `Thins` sy) -> (pos : Elem x sx) -> - indexPos (f . g) pos = indexPos f (indexPos g pos) -indexPosComp Id g pos = Refl -indexPosComp (Drop f) g pos = cong There (indexPosComp f g pos) -indexPosComp (Keep f) Id pos = Refl -indexPosComp (Keep f) (Drop g) pos = cong There (indexPosComp f g pos) -indexPosComp (Keep f) (Keep g) Here = Refl -indexPosComp (Keep f) (Keep g) (There pos) = cong There (indexPosComp f g pos) - --- Congruence ------------------------------------------------------------------ - -export -infix 6 ~~~ - -public export -data (~~~) : sx `Thins` sy -> sx `Thins` sz -> Type where - IdId : Id ~~~ Id - IdKeep : Id ~~~ f -> Id ~~~ Keep f - KeepId : f ~~~ Id -> Keep f ~~~ Id - DropDrop : f ~~~ g -> Drop f ~~~ Drop g - KeepKeep : f ~~~ g -> Keep f ~~~ Keep g - -%name Thinning.(~~~) prf - -export -(.indexPos) : f ~~~ g -> (pos : Elem x sx) -> elemToNat (indexPos f pos) = elemToNat (indexPos g pos) -(IdId).indexPos pos = Refl -(IdKeep prf).indexPos Here = Refl -(IdKeep prf).indexPos (There pos) = cong S $ prf.indexPos pos -(KeepId prf).indexPos Here = Refl -(KeepId prf).indexPos (There pos) = cong S $ prf.indexPos pos -(DropDrop prf).indexPos pos = cong S $ prf.indexPos pos -(KeepKeep prf).indexPos Here = Refl -(KeepKeep prf).indexPos (There pos) = cong S $ prf.indexPos pos - -export -(.index) : - {0 f, g : sx `Thins` sy} -> f ~~~ g -> (i : Var sx) -> index f i = index g i -prf.index ((%%) n {pos}) = irrelevantEq $ toVarCong $ toNatInjective $ prf.indexPos pos - --- Useful for Parsers ---------------------------------------------------------- - -public export -(<><) : ctx1 `Thins` ctx2 -> LengthOf bound -> ctx1 <>< bound `Thins` ctx2 <>< bound -f <>< Z = f -f <>< S len = Keep f <>< len - -public export -dropFish : ctx1 `Thins` ctx2 -> LengthOf bound -> ctx1 `Thins` ctx2 <>< bound -dropFish f Z = f -dropFish f (S len) = dropFish (Drop f) len - -public export -dropPos : (pos : Elem x ctx) -> dropElem ctx pos `Thins` ctx -dropPos Here = Drop Id -dropPos (There pos) = Keep (dropPos pos) - -public export -dropAll : LengthOf sy -> sx `Thins` sx ++ sy -dropAll Z = Id -dropAll (S len) = Drop (dropAll len) - -public export -keepAll : LengthOf sz -> sx `Thins` sy -> sx ++ sz `Thins` sy ++ sz -keepAll Z f = f -keepAll (S len) f = Keep (keepAll len f) - -public export -append : - sx `Thins` sz -> sy `Thins` sw -> - {auto len : LengthOf sw} -> - sx ++ sy `Thins` sz ++ sw -append f Id = keepAll len f -append f (Drop g) {len = S len} = Drop (append f g) -append f (Keep g) {len = S len} = Keep (append f g) - -public export -assoc : LengthOf sz -> sx ++ (sy ++ sz) `Thins` (sx ++ sy) ++ sz -assoc Z = Id -assoc (S len) = Keep (assoc len) - -public export -growLengthOf : sx `Thins` sy -> LengthOf sx -> LengthOf sy -growLengthOf Id len = len -growLengthOf (Drop f) len = S (growLengthOf f len) -growLengthOf (Keep f) (S len) = S (growLengthOf f len) - -public export -thinLengthOf : sx `Thins` sy -> LengthOf sy -> LengthOf sx -thinLengthOf Id len = len -thinLengthOf (Drop f) (S len) = thinLengthOf f len -thinLengthOf (Keep f) (S len) = S (thinLengthOf f len) - -public export -thinAll : sx `Thins` sy -> All p sy -> All p sx -thinAll Id env = env -thinAll (Drop f) (env :< px) = thinAll f env -thinAll (Keep f) (env :< px) = thinAll f env :< px - -public export -splitL : - {0 sx, sy, sz : SnocList a} -> - LengthOf sz -> - sx `Thins` sy ++ sz -> - Exists (\sxA => Exists (\sxB => (sx = sxA ++ sxB, sxA `Thins` sy, sxB `Thins` sz))) -splitL Z f = Evidence sx (Evidence [<] (Refl, f, Id)) -splitL (S len) Id = Evidence sy (Evidence sz (Refl, Id, Id)) -splitL (S len) (Drop f) = - let Evidence sxA (Evidence sxB (Refl, g, h)) = splitL len f in - Evidence sxA (Evidence sxB (Refl, g, Drop h)) -splitL (S len) (Keep f) = - let Evidence sxA (Evidence sxB (Refl, g, h)) = splitL len f in - Evidence sxA (Evidence (sxB :< _) (Refl, g, Keep h)) - -public export -splitR : - {0 sx, sy, sz : SnocList a} -> - LengthOf sy -> - sx ++ sy `Thins` sz -> - Exists (\sxA => Exists (\sxB => (sz = sxA ++ sxB, sx `Thins` sxA, sy `Thins` sxB))) -splitR Z f = Evidence sz (Evidence [<] (Refl, f, Id)) -splitR (S len) Id = Evidence sx (Evidence sy (Refl, Id, Id)) -splitR (S len) (Drop f) = - let Evidence sxA (Evidence sxB (Refl, g, h)) = splitR (S len) f in - Evidence sxA (Evidence (sxB :< _) (Refl, g, Drop h)) -splitR (S len) (Keep f) = - let Evidence sxA (Evidence sxB (Refl, g, h)) = splitR len f in - Evidence sxA (Evidence (sxB :< _) (Refl, g, Keep h)) - --- Strengthening --------------------------------------------------------------- - -public export -data Skips : sx `Thins` sy -> Elem y sy -> Type where - Here : Drop f `Skips` Here - Also : f `Skips` i -> Drop f `Skips` There i - There : f `Skips` i -> Keep f `Skips` There i - -%name Skips skips - -public export -strengthen : - (f : sx `Thins` sy) -> (i : Elem y sy) -> - Proof (Elem y sx) (\j => i = indexPos f j) (f `Skips` i) -strengthen Id i = Just i `Because` Refl -strengthen (Drop f) Here = Nothing `Because` Here -strengthen (Drop f) (There i) = - map id (\_, prf => cong There prf) Also $ - strengthen f i -strengthen (Keep f) Here = Just Here `Because` Refl -strengthen (Keep f) (There i) = - map There (\_, prf => cong There prf) There $ - strengthen f i - -export -skipsDropPos : (i : Elem x sx) -> dropPos i `Skips` j -> i ~=~ j -skipsDropPos Here Here = Refl -skipsDropPos (There i) (There skips) = thereCong (skipsDropPos i skips) - ------------------------- ------------------------------------------------------- --- Renaming Coalgebras --------------------------------------------------------- --------------------------------------------------------------------------------- - -public export -interface Rename (0 a : Type) (0 t : SnocList a -> Type) where - rename : - {0 sx, sy : SnocList a} -> sx `Thins` sy -> - t sx -> t sy - 0 renameCong : - {0 sx, sy : SnocList a} -> {0 f, g : sx `Thins` sy} -> f ~~~ g -> - (x : t sx) -> rename f x = rename g x - 0 renameId : {0 sx : SnocList a} -> (x : t sx) -> rename Id x = x diff --git a/src/Inky/Data/SnocList/Var.idr b/src/Inky/Data/SnocList/Var.idr deleted file mode 100644 index cc7c088..0000000 --- a/src/Inky/Data/SnocList/Var.idr +++ /dev/null @@ -1,90 +0,0 @@ -module Inky.Data.SnocList.Var - -import public Inky.Data.SnocList.Elem - -import Data.Singleton -import Inky.Data.SnocList -import Inky.Decidable - -export -prefix 2 %% - -public export -record Var (sx : SnocList a) where - constructor (%%) - 0 name : a - {auto pos : Elem name sx} - -%name Var i, j, k - -public export -toVar : Elem x sx -> Var sx -toVar pos = (%%) x {pos} - -public export -ThereVar : Var sx -> Var (sx :< x) -ThereVar i = toVar (There i.pos) - -export -Show (Var sx) where - show i = show (elemToNat i.pos) - --- Basic Properties --------------------------------------------------------- - -export -toVarCong : {0 i : Elem x sx} -> {0 j : Elem y sx} -> i = j -> toVar i = toVar j -toVarCong Refl = Refl - -export -posCong : {0 i, j : Var sx} -> i = j -> i.pos ~=~ j.pos -posCong Refl = Refl - -export -toVarInjective : {i : Elem x sx} -> {j : Elem y sx} -> (0 _ : toVar i = toVar j) -> i = j -toVarInjective prf = toNatInjective $ toNatCong $ posCong prf - -export -posInjective : {i : Var sx} -> {j : Var sx} -> (0 _ : i.pos ~=~ j.pos) -> i = j -posInjective {i = %% x} {j = %% y} prf = irrelevantEq $ toVarCong prf - --- Decidable Equality ---------------------------------------------------------- - -public export -DecEq' (Var {a} sx) where - does i j = (decEq i.pos j.pos).does - reason i j = - mapWhen (\prf => irrelevantEq $ posInjective prf) posCong $ - (decEq i.pos j.pos).reason - --- Weakening ------------------------------------------------------------------- - -public export -wknL : (len : LengthOf sy) => Var sx -> Var (sx ++ sy) -wknL i = toVar $ wknL i.pos len - -public export -wknR : Var sx -> Var (sy ++ sx) -wknR i = toVar $ wknR i.pos - -public export -split : {auto len : LengthOf sy} -> Var (sx ++ sy) -> Either (Var sx) (Var sy) -split i = bimap toVar toVar $ split len i.pos - -public export -lift1 : - (Var sx -> Var sy) -> - Var (sx :< x) -> Var (sy :< y) -lift1 f ((%%) x {pos = Here}) = %% y -lift1 f ((%%) name {pos = There i}) = ThereVar (f $ %% name) - --- Names ----------------------------------------------------------------------- - -export -nameOf : {sx : SnocList a} -> (i : Var sx) -> Singleton i.name -nameOf i = nameOf i.pos - --- Search ---------------------------------------------------------------------- - -export -lookup : DecEq' a => (x : a) -> (sx : SnocList a) -> Maybe (Var sx) -lookup x sx = toVar <$> lookup x sx |