diff options
author | Greg Brown <greg.brown01@ed.ac.uk> | 2024-11-12 16:44:31 +0000 |
---|---|---|
committer | Greg Brown <greg.brown01@ed.ac.uk> | 2024-11-12 16:44:31 +0000 |
commit | ecaf9deb4b1d2ce85617438e621690b2df3ea367 (patch) | |
tree | f7f347a847ca58668349ee44e1bf047bff385600 /src/Inky/Term/Checks.idr | |
parent | 66169116cbacff64950407086fd0d832516a5f21 (diff) |
Add ability to desugar terms.
Remove `getChildren` construct---it's too niche for the core language.
Diffstat (limited to 'src/Inky/Term/Checks.idr')
-rw-r--r-- | src/Inky/Term/Checks.idr | 538 |
1 files changed, 538 insertions, 0 deletions
diff --git a/src/Inky/Term/Checks.idr b/src/Inky/Term/Checks.idr new file mode 100644 index 0000000..8ddcd8d --- /dev/null +++ b/src/Inky/Term/Checks.idr @@ -0,0 +1,538 @@ +module Inky.Term.Checks + +import Control.Function +import Data.DPair +import Data.List.Quantifiers +import Data.Singleton +import Data.These +import Inky.Data.SnocList.Quantifiers +import Inky.Decidable +import Inky.Decidable.Maybe +import Inky.Term + +%hide Prelude.Ops.infixl.(>=>) + +-- Can recompute type from synthesis proof + +export +synthsRecompute : + {tyEnv : _} -> {tmEnv : _} -> {e : _} -> + Synths tyEnv tmEnv e a -> Singleton a +checkSpineRecompute : + {tyEnv : _} -> {tmEnv : _} -> {a : _} -> + CheckSpine tyEnv tmEnv a ts b -> Singleton b +allSynthsRecompute : + {tyEnv : _} -> {tmEnv : _} -> {es : Context _} -> + {0 as : Row (Ty [<])} -> + AllSynths tyEnv tmEnv es as -> Singleton as + +synthsRecompute (AnnotS wf prf) = Val _ +synthsRecompute VarS = Val _ +synthsRecompute (LetS prf1 prf2) with (synthsRecompute prf1) + _ | Val _ = synthsRecompute prf2 +synthsRecompute (LetTyS wf prf) = synthsRecompute prf +synthsRecompute (AppS prf prfs) with (synthsRecompute prf) + _ | Val _ = checkSpineRecompute prfs +synthsRecompute (TupS prfs) with (allSynthsRecompute prfs) + _ | Val _ = Val _ +synthsRecompute (PrjS prf i) with (synthsRecompute prf) + _ | Val _ = [| (nameOf i).value |] +synthsRecompute (UnrollS prf) with (synthsRecompute prf) + _ | Val _ = Val _ +synthsRecompute (MapS f g h) = Val _ + +checkSpineRecompute [] = Val _ +checkSpineRecompute (prf :: prfs) = checkSpineRecompute prfs + +allSynthsRecompute [<] = Val _ +allSynthsRecompute (prfs :< prf) with (allSynthsRecompute prfs) | (synthsRecompute prf) + _ | Val _ | Val _ = Val _ + +-- Synthesis gives unique types + +synthsUnique : Synths tyEnv tmEnv e a -> Synths tyEnv tmEnv e b -> a = b +checkSpineUnique : CheckSpine tyEnv tmEnv a ts b -> CheckSpine tyEnv tmEnv a ts c -> b = c +allSynthsUnique : AllSynths tyEnv tmEnv es as -> AllSynths tyEnv tmEnv es bs -> as = bs + +synthsUnique (AnnotS _ _) (AnnotS _ _) = Refl +synthsUnique VarS VarS = Refl +synthsUnique (LetS prf1 prf2) (LetS prf1' prf2') = + let prf2' = rewrite synthsUnique prf1 prf1' in prf2' in + synthsUnique prf2 prf2' +synthsUnique (LetTyS _ prf) (LetTyS _ prf') = synthsUnique prf prf' +synthsUnique (AppS prf prfs) (AppS prf' prfs') = + let prfs' = rewrite synthsUnique prf prf' in prfs' in + checkSpineUnique prfs prfs' +synthsUnique (TupS {es} prfs) (TupS prfs') = + cong TProd $ allSynthsUnique prfs prfs' +synthsUnique (PrjS {as} prf i) (PrjS {as = bs} prf' j) = + let j = rewrite inj TProd $ synthsUnique prf prf' in j in + cong fst $ lookupUnique as i j +synthsUnique (UnrollS {x, a} prf) (UnrollS {x = y, a = b} prf') = + cong (\(x ** a) => sub [<TFix x a `Over` Id] a) $ + fixInjective $ + synthsUnique prf prf' +synthsUnique (MapS _ _ _) (MapS _ _ _) = Refl + +checkSpineUnique [] [] = Refl +checkSpineUnique (prf :: prfs) (prf' :: prfs') = checkSpineUnique prfs prfs' + +allSynthsUnique [<] [<] = Refl +allSynthsUnique ((:<) prfs {l} prf) (prfs' :< prf') = + snocCong (allSynthsUnique prfs prfs') (cong (l :-) $ synthsUnique prf prf') + +-- We cannot both succeed and fail + +synthsSplit : Synths tyEnv tmEnv e a -> NotSynths tyEnv tmEnv e -> Void +checksSplit : Checks tyEnv tmEnv a t -> NotChecks tyEnv tmEnv a t -> Void +checkSpineSplit : CheckSpine tyEnv tmEnv a ts b -> NotCheckSpine tyEnv tmEnv a ts -> Void +allSynthsSplit : AllSynths tyEnv tmEnv es as -> AnyNotSynths tyEnv tmEnv es -> Void +allChecksSplit : + (0 fresh : AllFresh as.names) -> + AllChecks tyEnv tmEnv as ts -> AnyNotChecks tyEnv tmEnv as ts -> Void +allBranchesSplit : + (0 fresh : AllFresh as.names) -> + AllBranches tyEnv tmEnv as a ts -> AnyNotBranches tyEnv tmEnv as a ts -> Void + +synthsSplit (AnnotS wf prf) (AnnotNS contras) = + these (wellFormedSplit wf) (checksSplit prf) (const $ checksSplit prf) contras +synthsSplit VarS contra = absurd contra +synthsSplit (LetS prf1 prf2) (LetNS1 contra) = synthsSplit prf1 contra +synthsSplit (LetS prf1 prf2) (LetNS2 prf1' contra) = + let contra = rewrite synthsUnique prf1 prf1' in contra in + synthsSplit prf2 contra +synthsSplit (LetTyS wf prf) (LetTyNS contras) = + these (wellFormedSplit wf) (synthsSplit prf) (const $ synthsSplit prf) contras +synthsSplit (AppS prf prfs) (AppNS1 contra) = synthsSplit prf contra +synthsSplit (AppS prf prfs) (AppNS2 prf' contras) = + let contras = rewrite synthsUnique prf prf' in contras in + checkSpineSplit prfs contras +synthsSplit (TupS prfs) (TupNS contras) = allSynthsSplit prfs contras +synthsSplit (PrjS prf i) (PrjNS1 contra) = synthsSplit prf contra +synthsSplit (PrjS {as} prf i) (PrjNS2 prf' contra) = + void $ contra as $ synthsUnique prf' prf +synthsSplit (PrjS {as, a} prf i) (PrjNS3 {as = bs} prf' contra) = + let i = rewrite inj TProd $ synthsUnique prf' prf in i in + void $ contra a i +synthsSplit (UnrollS prf) (UnrollNS1 contra) = synthsSplit prf contra +synthsSplit (UnrollS {x, a} prf) (UnrollNS2 prf' contra) = + void $ contra x a $ synthsUnique prf' prf +synthsSplit (MapS wf1 wf2 wf3) (MapNS contras) = + these (wellFormedSplit wf1) + (these (wellFormedSplit wf2) (wellFormedSplit wf3) (const $ wellFormedSplit wf3)) + (const $ these (wellFormedSplit wf2) (wellFormedSplit wf3) (const $ wellFormedSplit wf3)) + contras + +checksSplit (AnnotC prf1 prf2) (EmbedNC1 Annot contra) = synthsSplit prf1 contra +checksSplit (VarC prf1 prf2) (EmbedNC1 Var contra) = synthsSplit prf1 contra +checksSplit (AppC prf1 prf2) (EmbedNC1 App contra) = synthsSplit prf1 contra +checksSplit (PrjC prf1 prf2) (EmbedNC1 Prj contra) = synthsSplit prf1 contra +checksSplit (UnrollC prf1 prf2) (EmbedNC1 Unroll contra) = synthsSplit prf1 contra +checksSplit (MapC prf1 prf2) (EmbedNC1 Map contra) = synthsSplit prf1 contra +checksSplit (AnnotC prf1 prf2) (EmbedNC2 Annot prf1' contra) = + let contra = rewrite synthsUnique prf1 prf1' in contra in + alphaSplit prf2 contra +checksSplit (VarC prf1 prf2) (EmbedNC2 Var prf1' contra) = + let contra = rewrite synthsUnique prf1 prf1' in contra in + alphaSplit prf2 contra +checksSplit (AppC prf1 prf2) (EmbedNC2 App prf1' contra) = + let contra = rewrite synthsUnique prf1 prf1' in contra in + alphaSplit prf2 contra +checksSplit (PrjC prf1 prf2) (EmbedNC2 Prj prf1' contra) = + let contra = rewrite synthsUnique prf1 prf1' in contra in + alphaSplit prf2 contra +checksSplit (UnrollC prf1 prf2) (EmbedNC2 Unroll prf1' contra) = + let contra = rewrite synthsUnique prf1 prf1' in contra in + alphaSplit prf2 contra +checksSplit (MapC prf1 prf2) (EmbedNC2 Map prf1' contra) = + let contra = rewrite synthsUnique prf1 prf1' in contra in + alphaSplit prf2 contra +checksSplit (LetC prf1 prf2) (LetNC1 contra) = synthsSplit prf1 contra +checksSplit (LetC prf1 prf2) (LetNC2 prf1' contra) = + let contra = rewrite synthsUnique prf1 prf1' in contra in + checksSplit prf2 contra +checksSplit (LetTyC wf prf) (LetTyNC contras) = + these (wellFormedSplit wf) (checksSplit prf) (const $ checksSplit prf) contras +checksSplit (AbsC prf1 prf2) (AbsNC1 contra) = isFunctionSplit prf1 contra +checksSplit (AbsC prf1 prf2) (AbsNC2 prf1' contra) = + let (eq1, eq2) = isFunctionUnique prf1 prf1' in + let contra = rewrite eq1 in rewrite eq2 in contra in + checksSplit prf2 contra +checksSplit (TupC {as} prfs) (TupNC1 contra) = void $ contra as Refl +checksSplit (TupC {as} prfs) (TupNC2 contras) = allChecksSplit as.fresh prfs contras +checksSplit (InjC {as} i prf) (InjNC1 contra) = void $ contra as Refl +checksSplit (InjC {a} i prf) (InjNC2 contra) = void $ contra a i +checksSplit (InjC {as} i prf) (InjNC3 j contra) = + let contra = rewrite cong fst $ lookupUnique as i j in contra in + checksSplit prf contra +checksSplit (CaseC prf prfs) (CaseNC1 contra) = synthsSplit prf contra +checksSplit (CaseC {as} prf prfs) (CaseNC2 prf' contra) = + void $ contra as $ synthsUnique prf' prf +checksSplit (CaseC {as} prf prfs) (CaseNC3 prf' contras) = + let contras = rewrite inj TSum $ synthsUnique prf prf' in contras in + allBranchesSplit as.fresh prfs contras +checksSplit (RollC {x, a} prf) (RollNC1 contra) = void $ contra x a Refl +checksSplit (RollC prf) (RollNC2 contra) = checksSplit prf contra +checksSplit (FoldC prf1 prf2) (FoldNC1 contra) = synthsSplit prf1 contra +checksSplit (FoldC {x, a} prf1 prf2) (FoldNC2 prf1' contra) = + void $ contra x a $ synthsUnique prf1' prf1 +checksSplit (FoldC {t, b} prf1 prf2) (FoldNC3 prf1' contra) = + let + contra = + replace + {p = \(x ** a) => NotChecks tyEnv (tmEnv :< (sub [<b `Over` Id] a `Over` Id)) b t} + (fixInjective $ synthsUnique prf1' prf1) + contra + in + checksSplit prf2 contra + +checkSpineSplit (prf :: prfs) (Step1 contra) = void $ contra _ _ Refl +checkSpineSplit (prf :: prfs) (Step2 contras) = + these (checksSplit prf) (checkSpineSplit prfs) (const $ checkSpineSplit prfs) contras + +allSynthsSplit (prfs :< prf) (Step contras) = + these (synthsSplit prf) (allSynthsSplit prfs) (const $ allSynthsSplit prfs) contras + +allChecksSplit fresh (Step i prf prfs) (Step1 contra) = void $ contra _ i +allChecksSplit fresh (Step {as, t, ts} i prf prfs) (Step2 j contras) = + let + contras = + replace + {p = \(a ** i) => These (NotChecks tyEnv tmEnv a t) (AnyNotChecks tyEnv tmEnv (dropElem as i) ts)} + (lookupUnique (MkRow as fresh) j i) + contras + 0 fresh = dropElemFresh as fresh i + in + these (checksSplit prf) (allChecksSplit fresh prfs) (const $ allChecksSplit fresh prfs) contras + +allBranchesSplit fresh (Step i prf prfs) (Step1 contra) = void $ contra _ i +allBranchesSplit fresh (Step {as, b, x, t, ts} i prf prfs) (Step2 j contras) = + let + contras = + replace + {p = \(a ** i) => + These + (NotChecks tyEnv (tmEnv :< (a `Over` Id)) b t) + (AnyNotBranches tyEnv tmEnv (dropElem as i) b ts)} + (lookupUnique (MkRow as fresh) j i) + contras + 0 fresh = dropElemFresh as fresh i + in + these (checksSplit prf) (allBranchesSplit fresh prfs) (const $ allBranchesSplit fresh prfs) contras + +-- Synthesis and Checking are decidable + +fallbackCheck : + SynthsOnly e -> + Proof (Ty [<]) (Synths tyEnv tmEnv e) (NotSynths tyEnv tmEnv e) -> + (a : Ty [<]) -> + LazyEither (Checks tyEnv tmEnv a e) (NotChecks tyEnv tmEnv a e) +fallbackCheck prf p a = + map + (\xPrf => uncurry (EmbedC prf) $ snd xPrf) + (either (EmbedNC1 prf) (\xPrf => uncurry (EmbedNC2 prf) $ snd xPrf)) $ + (b := p) >=> alpha b a + +synths : + (tyEnv : All (const $ Thinned Ty [<]) tyCtx) -> + (tmEnv : All (const $ Thinned Ty [<]) tmCtx) -> + (e : Term mode m tyCtx tmCtx) -> + Proof (Ty [<]) (Synths tyEnv tmEnv e) (NotSynths tyEnv tmEnv e) +export +checks : + (tyEnv : All (const $ Thinned Ty [<]) tyCtx) -> + (tmEnv : All (const $ Thinned Ty [<]) tmCtx) -> + (a : Ty [<]) -> (t : Term mode m tyCtx tmCtx) -> + LazyEither (Checks tyEnv tmEnv a t) (NotChecks tyEnv tmEnv a t) +checkSpine : + (tyEnv : All (const $ Thinned Ty [<]) tyCtx) -> + (tmEnv : All (const $ Thinned Ty [<]) tmCtx) -> + (a : Ty [<]) -> (ts : List (Term mode m tyCtx tmCtx)) -> + Proof (Ty [<]) (CheckSpine tyEnv tmEnv a ts) (NotCheckSpine tyEnv tmEnv a ts) +allSynths : + (tyEnv : All (const $ Thinned Ty [<]) tyCtx) -> + (tmEnv : All (const $ Thinned Ty [<]) tmCtx) -> + (es : Context (Term mode m tyCtx tmCtx)) -> + (0 fresh : AllFresh es.names) -> + Proof (Subset (Row (Ty [<])) (\as => es.names = as.names)) + (AllSynths tyEnv tmEnv es . Subset.fst) + (AnyNotSynths tyEnv tmEnv es) +allChecks : + (tyEnv : All (const $ Thinned Ty [<]) tyCtx) -> + (tmEnv : All (const $ Thinned Ty [<]) tmCtx) -> + (as : Context (Ty [<])) -> (ts : Context (Term mode m tyCtx tmCtx)) -> + LazyEither (AllChecks tyEnv tmEnv as ts) (AnyNotChecks tyEnv tmEnv as ts) +allBranches : + (tyEnv : All (const $ Thinned Ty [<]) tyCtx) -> + (tmEnv : All (const $ Thinned Ty [<]) tmCtx) -> + (as : Context (Ty [<])) -> (a : Ty [<]) -> (ts : Context (x ** Term mode m tyCtx (tmCtx :< x))) -> + LazyEither (AllBranches tyEnv tmEnv as a ts) (AnyNotBranches tyEnv tmEnv as a ts) + +synths tyEnv tmEnv (Annot _ t a) = + pure (sub tyEnv a) $ + map (uncurry AnnotS) AnnotNS $ + all (wellFormed a) (checks tyEnv tmEnv (sub tyEnv a) t) +synths tyEnv tmEnv (Var _ i) = Just (indexAll i.pos tmEnv).extract `Because` VarS +synths tyEnv tmEnv (Let _ e (x ** f)) = + map snd + (\(_, _), (prf1, prf2) => LetS prf1 prf2) + (either LetNS1 (\xPrfs => uncurry LetNS2 (snd xPrfs))) $ + (a := synths tyEnv tmEnv e) >=> synths tyEnv (tmEnv :< (a `Over` Id)) f +synths tyEnv tmEnv (LetTy _ a (x ** e)) = + map id (\_, (wf, prf) => LetTyS wf prf) LetTyNS $ + all (wellFormed a) (synths (tyEnv :< (sub tyEnv a `Over` Id)) tmEnv e) +synths tyEnv tmEnv (Abs _ (bound ** t)) = Nothing `Because` ChecksNS Abs +synths tyEnv tmEnv (App _ e ts) = + map snd + (\(_, _), (prf1, prf2) => AppS prf1 prf2) + (either AppNS1 (\xPrfs => uncurry AppNS2 (snd xPrfs))) $ + (a := synths tyEnv tmEnv e) >=> checkSpine tyEnv tmEnv a ts +synths tyEnv tmEnv (Tup _ (MkRow es fresh)) = + map (TProd . fst) (\_ => TupS) TupNS $ + allSynths tyEnv tmEnv es fresh +synths tyEnv tmEnv (Prj meta e l) = + map (snd . snd) true false $ + (a := synths tyEnv tmEnv e) >=> + (as := isProd a) >=> + decLookup l as.context + where + true : + (x : (Ty [<], Row (Ty [<]), Ty [<])) -> + (Synths tyEnv tmEnv e (fst x), uncurry (\x, yz => (x = TProd (fst yz), uncurry (\y,z => Elem (l :- z) y.context) yz)) x) -> + Synths tyEnv tmEnv (Prj meta e l) (snd $ snd x) + true (.(TProd as), as, a) (prf, Refl, i) = PrjS prf i + + false : + Either + (NotSynths tyEnv tmEnv e) + (a : Ty [<] ** (Synths tyEnv tmEnv e a, + Either + ((as : Row (Ty [<])) -> Not (a = TProd as)) + (as : Row (Ty [<]) ** (a = TProd as, (b : Ty [<]) -> Not (Elem (l :- b) as.context))))) -> + NotSynths tyEnv tmEnv (Prj meta e l) + false (Left contra) = PrjNS1 contra + false (Right (a ** (prf1, Left contra))) = PrjNS2 prf1 contra + false (Right (.(TProd as) ** (prf1, Right (as ** (Refl, contra))))) = PrjNS3 prf1 contra +synths tyEnv tmEnv (Inj _ l t) = Nothing `Because` ChecksNS Inj +synths tyEnv tmEnv (Case _ e (MkRow ts _)) = Nothing `Because` ChecksNS Case +synths tyEnv tmEnv (Roll _ t) = Nothing `Because` ChecksNS Roll +synths tyEnv tmEnv (Unroll _ e) = + map f true false $ + synths tyEnv tmEnv e `andThen` isFix + where + f : (Ty [<], (x ** Ty [<x])) -> Ty [<] + f (a, (x ** b)) = sub [<TFix x b `Over` Id] b + + true : + (axb : _) -> + (Synths tyEnv tmEnv e (fst axb), uncurry (\a,xb => a = TFix xb.fst xb.snd) axb) -> + Synths tyEnv tmEnv (Unroll meta e) (f axb) + true (.(TFix x a), (x ** a)) (prf, Refl) = UnrollS prf + + false : + Either + (NotSynths tyEnv tmEnv e) + (a ** (Synths tyEnv tmEnv e a, (x : _) -> (b : _) -> Not (a = TFix x b))) -> + NotSynths tyEnv tmEnv (Unroll meta e) + false (Left contra) = UnrollNS1 contra + false (Right (a ** (prf, contra))) = UnrollNS2 prf contra +synths tyEnv tmEnv (Fold _ e (x ** t)) = Nothing `Because` ChecksNS Fold +synths tyEnv tmEnv (Map _ (x ** a) b c) = + pure _ $ + map (\(wf1, wf2, wf3) => MapS wf1 wf2 wf3) MapNS $ + all (wellFormed (TFix x a)) (all (wellFormed b) (wellFormed c)) + +checks tyEnv tmEnv a (Annot meta t b) = fallbackCheck Annot (synths tyEnv tmEnv $ Annot meta t b) a +checks tyEnv tmEnv a (Var meta i) = fallbackCheck Var (synths tyEnv tmEnv $ Var meta i) a +checks tyEnv tmEnv a (Let _ e (x ** t)) = + map + (\(_ ** (prf1, prf2)) => LetC prf1 prf2) + (either LetNC1 (\xPrfs => uncurry LetNC2 $ snd xPrfs)) $ + (b := synths tyEnv tmEnv e) >=> checks tyEnv (tmEnv :< (b `Over` Id)) a t +checks tyEnv tmEnv a (LetTy _ b (x ** t)) = + map (uncurry LetTyC) LetTyNC $ + all (wellFormed b) (checks (tyEnv :< (sub tyEnv b `Over` Id)) tmEnv a t) +checks tyEnv tmEnv a (Abs meta (bound ** t)) = + map + (\((_, _) ** (prf1, prf2)) => AbsC prf1 prf2) + (either AbsNC1 false) $ + (domCod := isFunction bound a) >=> + checks tyEnv (tmEnv <>< mapProperty (`Over` Id) (fst domCod)) (snd domCod) t + where + false : + (x ** (Prelude.uncurry (IsFunction bound a) x, NotChecks tyEnv (tmEnv <>< mapProperty (`Over` Id) (fst x)) (snd x) t)) -> + NotChecks tyEnv tmEnv a (Abs meta (bound ** t)) + false ((_,_) ** prf) = uncurry AbsNC2 prf +checks tyEnv tmEnv a (App meta f ts) = fallbackCheck App (synths tyEnv tmEnv $ App meta f ts) a +checks tyEnv tmEnv a (Tup _ (MkRow ts fresh')) = + map true false $ + (as := isProd a) >=> allChecks tyEnv tmEnv as.context ts + where + true : + forall a. + (as : Row (Ty [<]) ** (a = TProd as, AllChecks tyEnv tmEnv as.context ts)) -> + Checks tyEnv tmEnv a (Tup meta (MkRow ts fresh')) + true (as ** (Refl, prf)) = TupC prf + + false : + forall a. + Either + ((as : Row (Ty [<])) -> Not (a = TProd as)) + (as : Row (Ty [<]) ** (a = TProd as, AnyNotChecks tyEnv tmEnv as.context ts)) -> + NotChecks tyEnv tmEnv a (Tup meta (MkRow ts fresh')) + false (Left contra) = TupNC1 contra + false (Right (as ** (Refl, contra))) = TupNC2 contra +checks tyEnv tmEnv a (Prj meta e l) = fallbackCheck Prj (synths tyEnv tmEnv $ Prj meta e l) a +checks tyEnv tmEnv a (Inj _ l t) = + map true false $ + (as := isSum a) >=> + (b := decLookup l as.context) >=> + checks tyEnv tmEnv b t + where + true : + forall a. + (as ** (a = TSum as, (b ** (Elem (l :- b) as.context, Checks tyEnv tmEnv b t)))) -> + Checks tyEnv tmEnv a (Inj meta l t) + true (as ** (Refl, (b ** (i, prf)))) = InjC i prf + + false : + forall a. + Either + ((as : _) -> Not (a = TSum as)) + (as ** (a = TSum as, + Either + ((b : _) -> Not (Elem (l :- b) as.context)) + (b ** (Elem (l :- b) as.context, NotChecks tyEnv tmEnv b t)))) -> + NotChecks tyEnv tmEnv a (Inj meta l t) + false (Left contra) = InjNC1 contra + false (Right (as ** (Refl, Left contra))) = InjNC2 contra + false (Right (as ** (Refl, Right (b ** (i, contra))))) = InjNC3 i contra +checks tyEnv tmEnv a (Case _ e (MkRow ts fresh)) = + map true false $ + (b := synths tyEnv tmEnv e) >=> + (as := isSum b) >=> + allBranches tyEnv tmEnv as.context a ts + where + true : + forall fresh. + (b ** (Synths tyEnv tmEnv e b, (as ** (b = TSum as, AllBranches tyEnv tmEnv as.context a ts)))) -> + Checks tyEnv tmEnv a (Case meta e (MkRow ts fresh)) + true (.(TSum as) ** (prf, (as ** (Refl, prfs)))) = CaseC prf prfs + + false : + forall fresh. + Either + (NotSynths tyEnv tmEnv e) + (b ** (Synths tyEnv tmEnv e b, + Either + ((as : _) -> Not (b = TSum as)) + (as ** (b = TSum as, AnyNotBranches tyEnv tmEnv as.context a ts)))) -> + NotChecks tyEnv tmEnv a (Case meta e (MkRow ts fresh)) + false (Left contra) = CaseNC1 contra + false (Right (b ** (prf, Left contra))) = CaseNC2 prf contra + false (Right (.(TSum as) ** (prf, Right (as ** (Refl, contras))))) = CaseNC3 prf contras +checks tyEnv tmEnv a (Roll _ t) = + map true false $ + (xb := isFix a) >=> checks tyEnv tmEnv (ty xb) t + where + ty : (x ** Ty [<x]) -> Ty [<] + ty (x ** b) = sub [<TFix x b `Over` Id] b + + true : + forall a. + (xb : (x ** Ty [<x]) ** (a = TFix (fst xb) (snd xb), Checks tyEnv tmEnv (ty xb) t)) -> + Checks tyEnv tmEnv a (Roll meta t) + true ((x ** b) ** (Refl, prf)) = RollC prf + + false : + forall a. + Either + ((x : _) -> (b : Ty [<x]) -> Not (a = TFix x b)) + (xb : (x ** Ty [<x]) ** (a = TFix (fst xb) (snd xb), NotChecks tyEnv tmEnv (ty xb) t)) -> + NotChecks tyEnv tmEnv a (Roll meta t) + false (Left contra) = RollNC1 contra + false (Right ((x ** b) ** (Refl, contra))) = RollNC2 contra +checks tyEnv tmEnv a (Unroll meta e) = fallbackCheck Unroll (synths tyEnv tmEnv $ Unroll meta e) a +checks tyEnv tmEnv a (Fold _ e (x ** t)) = + map true false $ + (b := synths tyEnv tmEnv e) >=> + (yc := isFix b) >=> + checks tyEnv (tmEnv' yc) a t + where + tmEnv' : (y ** Ty [<y]) -> All (const $ Thinned Ty [<]) (tmCtx :< x) + tmEnv' (y ** c) = tmEnv :< (sub [<a `Over` Id] c `Over` Id) + + true : + (b ** (Synths tyEnv tmEnv e b, + (yc ** (b = TFix (fst yc) (snd yc), Checks tyEnv (tmEnv' yc) a t)))) -> + Checks tyEnv tmEnv a (Fold meta e (x ** t)) + true (.(TFix y b) ** (prf1, ((y ** b) ** (Refl, prf2)))) = FoldC prf1 prf2 + + false : + Either + (NotSynths tyEnv tmEnv e) + (b ** (Synths tyEnv tmEnv e b, + Either + ((y : _) -> (c : Ty [<y]) -> Not (b = TFix y c)) + (yc ** (b = TFix (fst yc) (snd yc), NotChecks tyEnv (tmEnv' yc) a t)))) -> + NotChecks tyEnv tmEnv a (Fold meta e (x ** t)) + false (Left contra) = FoldNC1 contra + false (Right (b ** (prf1, Left contra))) = FoldNC2 prf1 contra + false (Right (.(TFix y b) ** (prf1, Right ((y ** b) ** (Refl, contra))))) = FoldNC3 prf1 contra +checks tyEnv tmEnv a (Map meta (x ** b) c d) = + fallbackCheck Map (synths tyEnv tmEnv $ Map meta (x ** b) c d) a + +checkSpine tyEnv tmEnv a [] = Just a `Because` [] +checkSpine tyEnv tmEnv a (t :: ts) = + map snd true false $ + (bc := isArrow a) >=> + all (checks tyEnv tmEnv (fst bc) t) (checkSpine tyEnv tmEnv (snd bc) ts) + where + true : + forall a. + (bcd : ((Ty [<], Ty [<]), Ty [<])) -> + ( a = TArrow (fst $ fst bcd) (snd $ fst bcd) + , uncurry (\bc,d => (Checks tyEnv tmEnv (fst bc) t, CheckSpine tyEnv tmEnv (snd bc) ts d)) bcd) -> + CheckSpine tyEnv tmEnv a (t :: ts) (snd bcd) + true ((b, c), d) (Refl, (prf1, prf2)) = prf1 :: prf2 + + false : + forall a. + Either + ((b, c : Ty [<]) -> Not (a = TArrow b c)) + (bc : (Ty [<], Ty [<]) ** (a = TArrow (fst bc) (snd bc), + These + (NotChecks tyEnv tmEnv (fst bc) t) + (NotCheckSpine tyEnv tmEnv (snd bc) ts))) -> + NotCheckSpine tyEnv tmEnv a (t :: ts) + false (Left contra) = Step1 contra + false (Right ((b, c) ** (Refl, contras))) = Step2 contras + +allSynths tyEnv tmEnv [<] [<] = Just (Element [<] Refl) `Because` [<] +allSynths tyEnv tmEnv (es :< (l :- e)) (fresh :< freshIn) = + map + (\(a, Element as eq) => + Element ((:<) as (l :- a) @{rewrite sym eq in freshIn}) (cong (:< l) eq)) + (\(a, Element as eq), (prf, prfs) => (:<) prfs prf @{rewrite sym eq in freshIn}) + Step $ + all (synths tyEnv tmEnv e) (allSynths tyEnv tmEnv es fresh) + +allChecks tyEnv tmEnv [<] [<] = True `Because` Base +allChecks tyEnv tmEnv (as :< la) [<] = False `Because` Base1 +allChecks tyEnv tmEnv as (ts :< (l :- t)) = + map + (\((a ** i) ** (prf, prfs)) => Step i prf prfs) + (either Step1 (\xPrf => Step2 (snd $ fst xPrf) (snd xPrf))) $ + (ai := (decLookup l as).forget) >=> + all (checks tyEnv tmEnv (fst ai) t) (allChecks tyEnv tmEnv (dropElem as $ snd ai) ts) + +allBranches tyEnv tmEnv [<] b [<] = True `Because` Base +allBranches tyEnv tmEnv (as :< la) b [<] = False `Because` Base1 +allBranches tyEnv tmEnv as b (ts :< (l :- (x ** t))) = + map + (\((a ** i) ** (prf, prfs)) => Step i prf prfs) + (either Step1 (\xPrf => Step2 (snd $ fst xPrf) (snd xPrf))) $ + (ai := (decLookup l as).forget) >=> + all + (checks tyEnv (tmEnv :< (fst ai `Over` Id)) b t) + (allBranches tyEnv tmEnv (dropElem as $ snd ai) b ts) |