blob: 7562f27fe982d4929505e6b78b40776035b97d72 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
module Inky.Binding
import Control.Relation
import Control.Order
import Data.DPair
import Data.List
import Data.Nat
import Data.So
import Decidable.Equality
-- Types -----------------------------------------------------------------------
data WorldRepr : Nat -> List Bool -> Type where
Done : 0 `WorldRepr` []
True : w `WorldRepr` bs -> 1 + 2 * w `WorldRepr` True :: bs
False : w `WorldRepr` bs -> 2 * w `WorldRepr` False :: bs
export
World : Type
World = List Bool
export
Binder : Type
Binder = Nat
Member : Binder -> World -> Type
n `Member` [] = Void
Z `Member` b :: bs = So b
S n `Member` b :: bs = n `Member` bs
export
(:<) : World -> Binder -> World
[] :< Z = True :: []
[] :< (S n) = False :: [] :< n
(_ :: bs) :< Z = True :: bs
(b :: bs) :< (S n) = b :: bs :< n
snocSem : (bs : World) -> (k, n : Binder) -> n `Member` bs :< k <=> Either (n = k) (n `Member` bs)
snocSem [] Z Z = MkEquivalence (const $ Left Refl) (const Oh)
snocSem [] Z (S n) = MkEquivalence absurd absurd
snocSem [] (S k) 0 = MkEquivalence absurd absurd
snocSem [] (S k) (S n) =
let equiv = snocSem [] k n in
MkEquivalence
(mapFst (\prf => cong S prf) . equiv.leftToRight)
(equiv.rightToLeft . mapFst injective)
snocSem (b :: bs) Z Z =
MkEquivalence (const $ Left Refl) (const Oh)
snocSem (b :: bs) Z (S n) = MkEquivalence Right (\case (Right x) => x)
snocSem (b :: bs) (S k) Z = MkEquivalence Right (\case (Right x) => x)
snocSem (b :: bs) (S k) (S n) =
let equiv = snocSem bs k n in
MkEquivalence
(mapFst (\prf => cong S prf) . equiv.leftToRight)
(equiv.rightToLeft . mapFst injective)
export
Name : World -> Type
Name w = Subset Binder (`Member` w)
-- Countable binders -----------------------------------------------------------
export
BZ : Binder
BZ = Z
export
BS : Binder -> Binder
BS = S
-- Binders to names ------------------------------------------------------------
export
name : forall w. (b : Binder) -> Name (w :< b)
name b = Element b ((snocSem w b b).rightToLeft (Left Refl))
export
binder : Name w -> Binder
binder = fst
export
binderName : binder {w = w :< b} (name {w} b) = b
binderName = Refl
-- Empty world -----------------------------------------------------------------
export
Empty : World
Empty = []
export
Uninhabited (Name Empty) where
uninhabited n = void n.snd
-- Names are comparable and stripable ------------------------------------------
export
Eq (Name w) where
n == k = n == k
soEq : (n : Nat) -> So (n == n)
soEq Z = Oh
soEq (S k) = soEq k
export
strip : {b : Binder} -> Name (w :< b) -> Maybe (Name w)
strip (Element n member) =
case decSo (b == n) of
Yes _ => Nothing
No neq =>
Just
(Element n
(either
(\eq => void $ neq $ rewrite eq in soEq b)
id $
(snocSem w b n).leftToRight member))
-- Freshness -------------------------------------------------------------------
export
FreshIn : Binder -> World -> Type
FreshIn k bs = So (k `gte` length bs)
export
freshInEmpty : b `FreshIn` Empty
freshInEmpty = Oh
snocLength : (w : World) -> (k : Binder) -> So (k `gte` length w) -> So (S k `gte` length (w :< k))
snocLength [] 0 prf = Oh
snocLength [] (S k) prf = snocLength [] k prf
snocLength (b :: bs) (S k) prf = snocLength bs k prf
%inline
soRecomputable : (0 s : So b) -> So b
soRecomputable Oh = Oh
export
sucFresh : b `FreshIn` w -> S b `FreshIn` w :< b
sucFresh prf = soRecomputable (snocLength w b prf)
-- World inclusion -------------------------------------------------------------
export
(<=) : World -> World -> Type
w <= v = {n : Binder} -> n `Member` w -> n `Member` v
export
coerce : (0 prf : w <= v) -> Name w -> Name v
coerce lte n = Element n.fst (lte n.snd)
export
Reflexive World (<=) where
reflexive = id
export
Transitive World (<=) where
transitive f g = g . f
export
Preorder World (<=) where
export
emptyMin : Empty <= w
emptyMin n impossible
export
snocMono : {w, v : World} -> (b : Binder) -> w <= v -> w :< b <= v :< b
snocMono b lte {n} = (snocSem v b n).rightToLeft . mapSnd lte . (snocSem w b n).leftToRight
export
freshLte : {b : Binder} -> {w : World} -> (0 fresh : b `FreshIn` w) -> w <= w :< b
freshLte _ {n} = (snocSem w b n).rightToLeft . Right
-- DeBruijn Worlds -------------------------------------------------------------
export
WS : World -> World
WS = (False ::)
public export
shift : World -> World
shift w = WS w :< BZ
export
sucMono : w <= v -> WS w <= WS v
sucMono lte {n = (S n)} member = lte member
public export
shiftMono : {w, v : World} -> w <= v -> shift w <= shift v
shiftMono lte = snocMono BZ (sucMono lte)
export
sucLteShift : WS w <= shift w
sucLteShift {n = (S n)} member = member
export
sucInjective : WS w <= WS v -> w <= v
sucInjective lte {n} member = lte {n = (S n)} member
export
shiftInjective : shift w <= shift v -> w <= v
shiftInjective lte {n} member = lte {n = (S n)} member
export
sucLteShiftInjective : WS w <= shift v -> w <= v
sucLteShiftInjective lte {n} member = lte {n = (S n)} member
export
sucEmpty : WS Empty <= Empty
sucEmpty {n = (S n)} member impossible
-- Suc and snoc ----------------------------------------------------------------
export
sucDistributesOverSnocLte : WS (w :< b) <= WS w :< BS b
sucDistributesOverSnocLte {n = (S n)} member = member
export
sucDistributesOverSnocGte : WS w :< BS b <= WS (w :< b)
sucDistributesOverSnocGte {n = (S n)} member = member
|