1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
module Inky.Decidable
import public Inky.Decidable.Either
import Data.Bool
import Data.Either
import Data.Maybe
import Data.List
import Data.List1
import Data.List1.Properties
import Data.Nat
import Data.SnocList
import Data.So
import Data.These
import Data.Vect
import Decidable.Equality
public export
When : Type -> Bool -> Type
When a = Union a (Not a)
public export
Dec' : (0 _ : Type) -> Type
Dec' a = LazyEither a (Not a)
-- Operations ------------------------------------------------------------------
-- Conversion to Dec
public export
fromDec : Dec a -> Dec' a
fromDec (Yes prf) = True `Because` prf
fromDec (No contra) = False `Because` contra
public export
toDec : Dec' a -> Dec a
toDec (True `Because` prf) = Yes prf
toDec (False `Because` contra) = No contra
-- Negation
public export
notWhen : {b : Bool} -> a `When` b -> Not a `When` not b
notWhen = Union.map id (\prf, contra => contra prf) . Union.not
public export
notDec : Dec' a -> Dec' (Not a)
notDec p = not p.does `Because` notWhen p.reason
-- Maps
public export
mapWhen : (a -> a') -> (0 _ : a' -> a) -> {b : Bool} -> a `When` b -> a' `When` b
mapWhen f g = Union.map f (\contra, prf => void $ contra $ g prf)
public export
mapDec : (a -> b) -> (0 _ : b -> a) -> Dec' a -> Dec' b
mapDec f g = map f (\contra, prf => void $ contra $ g prf)
-- Conjunction
public export
andWhen : {b1, b2 : Bool} -> a1 `When` b1 -> Lazy (a2 `When` b2) -> (a1, a2) `When` (b1 && b2)
andWhen x y =
Union.map {d = Not (a1, a2)} id (\x, (y, z) => either (\f => f y) (\g => g z) x) $
Union.both x y
public export
andDec : Dec' a -> Dec' b -> Dec' (a, b)
andDec p q = (p.does && q.does) `Because` andWhen p.reason q.reason
-- Disjunction
public export
elseWhen : {b1, b2 : Bool} -> a1 `When` b1 -> Lazy (a2 `When` b2) -> Either a1 a2 `When` (b1 || b2)
elseWhen x y =
Union.map {b = (Not a1, Not a2)} id (\(f, g) => either f g) $
Union.first x y
public export
elseDec : Dec' a -> Dec' b -> Dec' (Either a b)
elseDec p q = (p.does || q.does) `Because` elseWhen p.reason q.reason
public export
orWhen : {b1, b2 : Bool} -> a1 `When` b1 -> a2 `When` b2 -> These a1 a2 `When` (b1 || b2)
orWhen x y =
Union.map {b = (Not a1, Not a2)} id (\(f, g) => these f g (const g)) $
Union.any x y
public export
orDec : Dec' a -> Dec' b -> Dec' (These a b)
orDec p q = (p.does || q.does) `Because` orWhen p.reason q.reason
-- Dependent Versions
public export
thenDec :
(0 b : a -> Type) ->
(0 unique : (x, y : a) -> b x -> b y) ->
Dec' a -> ((x : a) -> Dec' (b x)) -> Dec' (x ** b x)
thenDec b unique p f =
map id
(\contra, (x ** prf) =>
either
(\contra => contra x)
(\yContra => void $ snd yContra $ unique x (fst yContra) prf)
contra) $
andThen p f
-- Equality --------------------------------------------------------------------
public export
interface DecEq' (0 a : Type) where
does : (x, y : a) -> Bool
reason : (x, y : a) -> (x = y) `When` (does x y)
decEq : (x, y : a) -> Dec' (x = y)
decEq x y = does x y `Because` reason x y
public export
whenCong : (0 _ : Injective f) => {b : Bool} -> (x = y) `When` b -> (f x = f y) `When` b
whenCong = mapWhen (\prf => cong f prf) (\prf => inj f prf)
public export
whenCong2 :
(0 _ : Biinjective f) =>
{b1, b2 : Bool} ->
(x = y) `When` b1 -> (z = w) `When` b2 ->
(f x z = f y w) `When` (b1 && b2)
whenCong2 p q =
mapWhen {a = (_, _)} (\prfs => cong2 f (fst prfs) (snd prfs)) (\prf => biinj f prf) $
andWhen p q
[ToEq] DecEq' a => Eq a where
x == y = does x y
-- Instances -------------------------------------------------------------------
public export
DecEq' () where
does _ _ = True
reason () () = Refl
public export
DecEq' Bool where
does b1 b2 = b1 == b2
reason False False = Refl
reason False True = absurd
reason True False = absurd
reason True True = Refl
public export
DecEq' Nat where
does k n = k == n
reason 0 0 = Refl
reason 0 (S n) = absurd
reason (S k) 0 = absurd
reason (S k) (S n) = whenCong (reason k n)
public export
(d : DecEq' a) => DecEq' (Maybe a) where
does x y = let _ = ToEq @{d} in x == y
reason Nothing Nothing = Refl
reason Nothing (Just y) = absurd
reason (Just x) Nothing = absurd
reason (Just x) (Just y) = whenCong (reason x y)
public export
(d1 : DecEq' a) => (d2 : DecEq' b) => DecEq' (Either a b) where
does x y = let _ = ToEq @{d1} in let _ = ToEq @{d2} in x == y
reason (Left x) (Left y) = whenCong (reason x y)
reason (Left x) (Right y) = absurd
reason (Right x) (Left y) = absurd
reason (Right x) (Right y) = whenCong (reason x y)
public export
(d1 : DecEq' a) => (d2 : DecEq' b) => DecEq' (These a b) where
does x y = let _ = ToEq @{d1} in let _ = ToEq @{d2} in x == y
reason (This x) (This y) = whenCong (reason x y)
reason (That x) (That y) = whenCong (reason x y)
reason (Both x z) (Both y w) = whenCong2 (reason x y) (reason z w)
reason (This x) (That y) = \case Refl impossible
reason (This x) (Both y z) = \case Refl impossible
reason (That x) (This y) = \case Refl impossible
reason (That x) (Both y z) = \case Refl impossible
reason (Both x z) (This y) = \case Refl impossible
reason (Both x z) (That y) = \case Refl impossible
public export
(d1 : DecEq' a) => (d2 : DecEq' b) => DecEq' (a, b) where
does x y = let _ = ToEq @{d1} in let _ = ToEq @{d2} in x == y
reason (x, y) (z, w) = whenCong2 (reason x z) (reason y w)
public export
(d : DecEq' a) => DecEq' (List a) where
does x y = let _ = ToEq @{d} in x == y
reason [] [] = Refl
reason [] (y :: ys) = absurd
reason (x :: xs) [] = absurd
reason (x :: xs) (y :: ys) = whenCong2 (reason x y) (reason xs ys)
public export
(d : DecEq' a) => DecEq' (List1 a) where
does x y = let _ = ToEq @{d} in x == y
reason (x ::: xs) (y ::: ys) = whenCong2 (reason x y) (reason xs ys)
public export
(d : DecEq' a) => DecEq' (SnocList a) where
does x y = let _ = ToEq @{d} in x == y
reason [<] [<] = Refl
reason [<] (sy :< y) = absurd
reason (sx :< x) [<] = absurd
reason (sx :< x) (sy :< y) =
rewrite sym $ andCommutative (does sx sy) (does x y) in
whenCong2 (reason sx sy) (reason x y)
-- Other Primitives
%unsafe
public export
primitiveEq : Eq a => (x, y : a) -> (x = y) `When` (x == y)
primitiveEq x y with (x == y)
_ | True = believe_me (Refl {x})
_ | False = \prf => believe_me {b = Void} ()
%unsafe
public export
[FromEq] Eq a => DecEq' a where
does x y = x == y
reason x y = primitiveEq x y
public export
DecEq' Int where
does = does @{FromEq}
reason = reason @{FromEq}
public export
DecEq' Char where
does = does @{FromEq}
reason = reason @{FromEq}
public export
DecEq' Integer where
does = does @{FromEq}
reason = reason @{FromEq}
public export
DecEq' String where
does = does @{FromEq}
reason = reason @{FromEq}
|