blob: c3235c0ee84e0a85a0647d870904c1faf4e898e1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
module Inky.Thinning
import public Data.Fin
import Control.Function
--------------------------------------------------------------------------------
-- Thinnings -------------------------------------------------------------------
--------------------------------------------------------------------------------
public export
data Thins : Nat -> Nat -> Type where
Id : n `Thins` n
Drop : k `Thins` n -> k `Thins` S n
Keep : k `Thins` n -> S k `Thins` S n
%name Thins f, g, h
-- Basics
export
index : k `Thins` n -> Fin k -> Fin n
index Id x = x
index (Drop f) x = FS (index f x)
index (Keep f) FZ = FZ
index (Keep f) (FS x) = FS (index f x)
export
(.) : k `Thins` n -> j `Thins` k -> j `Thins` n
Id . g = g
Drop f . g = Drop (f . g)
Keep f . Id = Keep f
Keep f . Drop g = Drop (f . g)
Keep f . Keep g = Keep (f . g)
-- Basic properties
export
indexInjective : (f : k `Thins` n) -> {x, y : Fin k} -> index f x = index f y -> x = y
indexInjective Id eq = eq
indexInjective (Drop f) eq = indexInjective f $ injective eq
indexInjective (Keep f) {x = FZ} {y = FZ} eq = Refl
indexInjective (Keep f) {x = FS x} {y = FS y} eq = cong FS $ indexInjective f $ injective eq
export
(f : k `Thins` n) => Injective (index f) where
injective = indexInjective f
export
indexId : (0 x : Fin n) -> index Id x = x
indexId x = Refl
export
indexDrop : (0 f : k `Thins` n) -> (0 x : Fin k) -> index (Drop f) x = FS (index f x)
indexDrop f x = Refl
export
indexKeepFZ : (0 f : k `Thins` n) -> index (Keep f) FZ = FZ
indexKeepFZ f = Refl
export
indexKeepFS : (0 f : k `Thins` n) -> (0 x : Fin k) -> index (Keep f) (FS x) = FS (index f x)
indexKeepFS f x = Refl
export
indexComp :
(f : k `Thins` n) -> (g : j `Thins` k) -> (x : Fin j) ->
index (f . g) x = index f (index g x)
indexComp Id g x = Refl
indexComp (Drop f) g x = cong FS (indexComp f g x)
indexComp (Keep f) Id x = Refl
indexComp (Keep f) (Drop g) x = cong FS (indexComp f g x)
indexComp (Keep f) (Keep g) FZ = Refl
indexComp (Keep f) (Keep g) (FS x) = cong FS (indexComp f g x)
-- Congruence ------------------------------------------------------------------
export
infix 6 ~~~
public export
data (~~~) : k `Thins` n -> k `Thins` n -> Type where
IdId : Id ~~~ Id
IdKeep : Id ~~~ f -> Id ~~~ Keep f
KeepId : f ~~~ Id -> Keep f ~~~ Id
DropDrop : f ~~~ g -> Drop f ~~~ Drop g
KeepKeep : f ~~~ g -> Keep f ~~~ Keep g
%name Thinning.(~~~) prf
export
(.index) : f ~~~ g -> (x : Fin k) -> index f x = index g x
(IdId).index x = Refl
(IdKeep prf).index FZ = Refl
(IdKeep prf).index (FS x) = cong FS (prf.index x)
(KeepId prf).index FZ = Refl
(KeepId prf).index (FS x) = cong FS (prf.index x)
(DropDrop prf).index x = cong FS (prf.index x)
(KeepKeep prf).index FZ = Refl
(KeepKeep prf).index (FS x) = cong FS (prf.index x)
export
pointwise : {f, g : k `Thins` n} -> (0 _ : (x : Fin k) -> index f x = index g x) -> f ~~~ g
pointwise {f = Id} {g = Id} prf = IdId
pointwise {f = Id} {g = Drop g} prf = void $ absurd $ prf FZ
pointwise {f = Id} {g = Keep g} prf = IdKeep (pointwise $ \x => injective $ prf $ FS x)
pointwise {f = Drop f} {g = Id} prf = void $ absurd $ prf FZ
pointwise {f = Drop f} {g = Drop g} prf = DropDrop (pointwise $ \x => injective $ prf x)
pointwise {f = Drop f} {g = Keep g} prf = void $ absurd $ prf FZ
pointwise {f = Keep f} {g = Id} prf = KeepId (pointwise $ \x => injective $ prf $ FS x)
pointwise {f = Keep f} {g = Drop g} prf = void $ absurd $ prf FZ
pointwise {f = Keep f} {g = Keep g} prf = KeepKeep (pointwise $ \x => injective $ prf $ FS x)
--------------------------------------------------------------------------------
-- Environments ----------------------------------------------------------------
--------------------------------------------------------------------------------
public export
data Env : Nat -> Nat -> Type -> Type where
Base : k `Thins` n -> Env k n a
(:<) : Env k n a -> a -> Env (S k) n a
%name Env env
export
lookup : Env k n a -> Fin k -> Either (Fin n) a
lookup (Base f) x = Left (index f x)
lookup (env :< v) FZ = Right v
lookup (env :< v) (FS x) = lookup env x
-- Properties
export
lookupFZ : (0 env : Env k n a) -> (0 v : a) -> lookup (env :< v) FZ = Right v
lookupFZ env v = Refl
export
lookupFS :
(0 env : Env k n a) -> (0 v : a) -> (0 x : Fin k) ->
lookup (env :< v) (FS x) = lookup env x
lookupFS env v x = Refl
--------------------------------------------------------------------------------
-- Renaming Coalgebras ---------------------------------------------------------
--------------------------------------------------------------------------------
public export
interface Rename (0 a : Nat -> Type) where
var : Fin n -> a n
rename : k `Thins` n -> a k -> a n
0 renameCong : {0 f, g : k `Thins` n} -> f ~~~ g -> (x : a k) -> rename f x = rename g x
0 renameId : (x : a n) -> rename Id x = x
export
lift : Rename a => k `Thins` n -> Env j k (a k) -> Env j n (a n)
lift Id env = env
lift f (Base g) = Base (f . g)
lift f (env :< v) = lift f env :< rename f v
export
lookupLift :
Rename a =>
(f : k `Thins` n) -> (env : Env j k (a k)) -> (x : Fin j) ->
lookup (lift f env) x = bimap (index f) (rename f) (lookup env x)
lookupLift Id env x with (lookup env x)
_ | Left y = Refl
_ | Right y = cong Right $ irrelevantEq $ sym $ renameId y
lookupLift (Drop f) (Base g) x = cong Left $ indexComp (Drop f) g x
lookupLift (Drop f) (env :< y) FZ = Refl
lookupLift (Drop f) (env :< y) (FS x) = lookupLift (Drop f) env x
lookupLift (Keep f) (Base g) x = cong Left $ indexComp (Keep f) g x
lookupLift (Keep f) (env :< y) FZ = Refl
lookupLift (Keep f) (env :< y) (FS x) = lookupLift (Keep f) env x
|