summaryrefslogtreecommitdiff
path: root/src/Inky/Type.idr
blob: aadd96875156e8f4d391e50427998715a93b4725 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
module Inky.Type

import public Data.List1

import Control.Function
import Data.Bool.Decidable
import Data.Either
import Data.These
import Data.These.Decidable
import Decidable.Equality
import Inky.Thinning

-- Utilities -------------------------------------------------------------------

reflectFinEq : (i, j : Fin n) -> (i = j) `Reflects` (i == j)
reflectFinEq FZ FZ = RTrue Refl
reflectFinEq FZ (FS j) = RFalse absurd
reflectFinEq (FS i) FZ = RFalse absurd
reflectFinEq (FS i) (FS j) =
  viaEquivalence (MkEquivalence (\prf => cong FS prf) injective)
    (reflectFinEq i j)

-- Definition ------------------------------------------------------------------

public export
data Ty : Nat -> Type where
  TVar : Fin n -> Ty n
  TNat : Ty n
  TArrow : Ty n -> Ty n -> Ty n
  TUnion : List1 (Ty n) -> Ty n
  TProd : List (Ty n) -> Ty n
  TSum : List (Ty n) -> Ty n
  TFix : Ty (S n) -> Ty n

%name Ty a, b, c

export
Injective TVar where
  injective Refl = Refl

-- Equality --------------------------------------------------------------------

export
eq : Ty n -> Ty n -> Bool
eqAll : List (Ty n) -> List (Ty n) -> Bool
eqAll1 : List1 (Ty n) -> List1 (Ty n) -> Bool

TVar i `eq` TVar j = i == j
TNat `eq` TNat = True
TArrow a b `eq` TArrow c d = (a `eq` c) && (b `eq` d)
TUnion as `eq` TUnion bs = as `eqAll1` bs
TProd as `eq` TProd bs = as `eqAll` bs
TSum as `eq` TSum bs = as `eqAll` bs
TFix a `eq` TFix b = a `eq` b
_ `eq` _ = False

[] `eqAll` [] = True
(a :: as) `eqAll` (b :: bs) = (a `eq` b) && (as `eqAll` bs)
_ `eqAll` _ = False

(a ::: as) `eqAll1` (b ::: bs) = (a `eq` b) && (as `eqAll` bs)

public export
Eq (Ty n) where
  (==) = eq

export
reflectEq : (a, b : Ty n) -> (a = b) `Reflects` (a `eq` b)
reflectEqAll : (as, bs : List (Ty n)) -> (as = bs) `Reflects` (as `eqAll` bs)
reflectEqAll1 : (as, bs : List1 (Ty n)) -> (as = bs) `Reflects` (as `eqAll1` bs)

reflectEq (TVar i) (TVar j) with (reflectFinEq i j) | (i == j)
  _ | RTrue eq | _ = RTrue (cong TVar eq)
  _ | RFalse neq | _ = RFalse (\eq => neq $ injective eq)
reflectEq (TVar i) TNat = RFalse (\case Refl impossible)
reflectEq (TVar i) (TArrow c d) = RFalse (\case Refl impossible)
reflectEq (TVar i) (TUnion c) = RFalse (\case Refl impossible)
reflectEq (TVar i) (TProd c) = RFalse (\case Refl impossible)
reflectEq (TVar i) (TSum c) = RFalse (\case Refl impossible)
reflectEq (TVar i) (TFix b) = RFalse (\case Refl impossible)
reflectEq TNat (TVar j) = RFalse (\case Refl impossible)
reflectEq TNat TNat = RTrue Refl
reflectEq TNat (TArrow c d) = RFalse (\case Refl impossible)
reflectEq TNat (TUnion c) = RFalse (\case Refl impossible)
reflectEq TNat (TProd c) = RFalse (\case Refl impossible)
reflectEq TNat (TSum c) = RFalse (\case Refl impossible)
reflectEq TNat (TFix b) = RFalse (\case Refl impossible)
reflectEq (TArrow a b) (TVar j) = RFalse (\case Refl impossible)
reflectEq (TArrow a b) TNat = RFalse (\case Refl impossible)
reflectEq (TArrow a b) (TArrow c d) with (reflectEq a c) | (a `eq` c)
  _ | RTrue eq1 | _ with (reflectEq b d) | (b `eq` d)
    _ | RTrue eq2 | _ = RTrue (cong2 TArrow eq1 eq2)
    _ | RFalse neq2 | _ = RFalse (\case Refl => neq2 Refl)
  _ | RFalse neq1 | _ = RFalse (\case Refl => neq1 Refl)
reflectEq (TArrow a b) (TUnion c) = RFalse (\case Refl impossible)
reflectEq (TArrow a b) (TProd c) = RFalse (\case Refl impossible)
reflectEq (TArrow a b) (TSum c) = RFalse (\case Refl impossible)
reflectEq (TArrow a b) (TFix c) = RFalse (\case Refl impossible)
reflectEq (TUnion as) (TVar j) = RFalse (\case Refl impossible)
reflectEq (TUnion as) TNat = RFalse (\case Refl impossible)
reflectEq (TUnion as) (TArrow c d) = RFalse (\case Refl impossible)
reflectEq (TUnion as) (TUnion c) with (reflectEqAll1 as c) | (as `eqAll1` c)
  _ | RTrue eq | _ = RTrue (cong TUnion eq)
  _ | RFalse neq | _ = RFalse (\case Refl => neq Refl)
reflectEq (TUnion as) (TProd c) = RFalse (\case Refl impossible)
reflectEq (TUnion as) (TSum c) = RFalse (\case Refl impossible)
reflectEq (TUnion as) (TFix b) = RFalse (\case Refl impossible)
reflectEq (TProd as) (TVar j) = RFalse (\case Refl impossible)
reflectEq (TProd as) TNat = RFalse (\case Refl impossible)
reflectEq (TProd as) (TArrow c d) = RFalse (\case Refl impossible)
reflectEq (TProd as) (TUnion c) = RFalse (\case Refl impossible)
reflectEq (TProd as) (TProd c) with (reflectEqAll as c) | (as `eqAll` c)
  _ | RTrue eq | _ = RTrue (cong TProd eq)
  _ | RFalse neq | _ = RFalse (\case Refl => neq Refl)
reflectEq (TProd as) (TSum c) = RFalse (\case Refl impossible)
reflectEq (TProd as) (TFix b) = RFalse (\case Refl impossible)
reflectEq (TSum as) (TVar j) = RFalse (\case Refl impossible)
reflectEq (TSum as) TNat = RFalse (\case Refl impossible)
reflectEq (TSum as) (TArrow c d) = RFalse (\case Refl impossible)
reflectEq (TSum as) (TUnion c) = RFalse (\case Refl impossible)
reflectEq (TSum as) (TProd c) = RFalse (\case Refl impossible)
reflectEq (TSum as) (TSum c) with (reflectEqAll as c) | (as `eqAll` c)
  _ | RTrue eq | _ = RTrue (cong TSum eq)
  _ | RFalse neq | _ = RFalse (\case Refl => neq Refl)
reflectEq (TSum as) (TFix b) = RFalse (\case Refl impossible)
reflectEq (TFix a) (TVar j) = RFalse (\case Refl impossible)
reflectEq (TFix a) TNat = RFalse (\case Refl impossible)
reflectEq (TFix a) (TArrow c d) = RFalse (\case Refl impossible)
reflectEq (TFix a) (TUnion c) = RFalse (\case Refl impossible)
reflectEq (TFix a) (TProd c) = RFalse (\case Refl impossible)
reflectEq (TFix a) (TSum c) = RFalse (\case Refl impossible)
reflectEq (TFix a) (TFix b) with (reflectEq a b) | (a `eq` b)
  _ | RTrue eq | _ = RTrue (cong TFix eq)
  _ | RFalse neq | _ = RFalse (\case Refl => neq Refl)

reflectEqAll [] [] = RTrue Refl
reflectEqAll [] (b :: bs) = RFalse (\case Refl impossible)
reflectEqAll (a :: as) [] = RFalse (\case Refl impossible)
reflectEqAll (a :: as) (b :: bs) with (reflectEq a b) | (a `eq` b)
  _ | RTrue eq1 | _ with (reflectEqAll as bs) | (as `eqAll` bs)
    _ | RTrue eq2 | _ = RTrue (cong2 (::) eq1 eq2)
    _ | RFalse neq2 | _ = RFalse (\case Refl => neq2 Refl)
  _ | RFalse neq1 | _ = RFalse (\case Refl => neq1 Refl)

reflectEqAll1 (a ::: as) (b ::: bs) with (reflectEq a b) | (a `eq` b)
  _ | RTrue eq1 | _ with (reflectEqAll as bs) | (as `eqAll` bs)
    _ | RTrue eq2 | _ = RTrue (cong2 (:::) eq1 eq2)
    _ | RFalse neq2 | _ = RFalse (\case Refl => neq2 Refl)
  _ | RFalse neq1 | _ = RFalse (\case Refl => neq1 Refl)

-- Occurs ----------------------------------------------------------------------

OccursIn : Fin n -> Ty n -> Type
OccursInAny : Fin n -> List (Ty n) -> Type
OccursInAny1 : Fin n -> List1 (Ty n) -> Type

i `OccursIn` TVar j = i = j
i `OccursIn` TNat = Void
i `OccursIn` TArrow a b = These (i `OccursIn` a) (i `OccursIn` b)
i `OccursIn` TUnion as = i `OccursInAny1` as
i `OccursIn` TProd as = i `OccursInAny` as
i `OccursIn` TSum as = i `OccursInAny` as
i `OccursIn` TFix a = FS i `OccursIn` a

i `OccursInAny` [] = Void
i `OccursInAny` a :: as = These (i `OccursIn` a) (i `OccursInAny` as)

i `OccursInAny1` a ::: as = These (i `OccursIn` a) (i `OccursInAny` as)

-- Decidable

occursIn : (i : Fin n) -> (a : Ty n) -> Bool
occursInAny : (i : Fin n) -> (as : List (Ty n)) -> Bool
occursInAny1 : (i : Fin n) -> (as : List1 (Ty n)) -> Bool

reflectOccursIn :
  (i : Fin n) -> (a : Ty n) ->
  (i `OccursIn` a) `Reflects` (i `occursIn` a)
reflectOccursInAny :
  (i : Fin n) -> (as : List (Ty n)) ->
  (i `OccursInAny` as) `Reflects` (i `occursInAny` as)
reflectOccursInAny1 :
  (i : Fin n) -> (as : List1 (Ty n)) ->
  (i `OccursInAny1` as) `Reflects` (i `occursInAny1` as)

i `occursIn` (TVar j) = i == j
i `occursIn` TNat = False
i `occursIn` (TArrow a b) = (i `occursIn` a) || (i `occursIn` b)
i `occursIn` (TUnion as) = i `occursInAny1` as
i `occursIn` (TProd as) = i `occursInAny` as
i `occursIn` (TSum as) = i `occursInAny` as
i `occursIn` (TFix a) = FS i `occursIn` a

i `occursInAny` [] = False
i `occursInAny` (a :: as) = (i `occursIn` a) || (i `occursInAny` as)

i `occursInAny1` (a ::: as) = (i `occursIn` a) || (i `occursInAny` as)

reflectOccursIn i (TVar j) = reflectFinEq i j
reflectOccursIn i TNat = RFalse id
reflectOccursIn i (TArrow a b) = reflectThese (reflectOccursIn i a) (reflectOccursIn i b)
reflectOccursIn i (TUnion as) = reflectOccursInAny1 i as
reflectOccursIn i (TProd as) = reflectOccursInAny i as
reflectOccursIn i (TSum as) = reflectOccursInAny i as
reflectOccursIn i (TFix a) = reflectOccursIn (FS i) a

reflectOccursInAny i [] = RFalse id
reflectOccursInAny i (a :: as) = reflectThese (reflectOccursIn i a) (reflectOccursInAny i as)

reflectOccursInAny1 i (a ::: as) = reflectThese (reflectOccursIn i a) (reflectOccursInAny i as)

-- Not Strictly Positive -----------------------------------------------------------

-- We use negation so we get a cause on failure.

NotPositiveIn : Fin n -> Ty n -> Type
NotPositiveInAny : Fin n -> List (Ty n) -> Type
NotPositiveInAny1 : Fin n -> List1 (Ty n) -> Type

i `NotPositiveIn` TVar j = Void
i `NotPositiveIn` TNat = Void
i `NotPositiveIn` TArrow a b = These (i `OccursIn` a) (i `NotPositiveIn` b)
i `NotPositiveIn` TUnion as = i `NotPositiveInAny1` as
i `NotPositiveIn` TProd as = i `NotPositiveInAny` as
i `NotPositiveIn` TSum as = i `NotPositiveInAny` as
i `NotPositiveIn` TFix a = FS i `OccursIn` a
  -- Prevent mutual recursion;
  -- Can add back in without breaking things

i `NotPositiveInAny` [] = Void
i `NotPositiveInAny` a :: as = These (i `NotPositiveIn` a) (i `NotPositiveInAny` as)

i `NotPositiveInAny1` a ::: as = These (i `NotPositiveIn` a) (i `NotPositiveInAny` as)

-- Not Positive implies Occurs

notPositiveToOccurs : (a : Ty k) -> i `NotPositiveIn` a -> i `OccursIn` a
notPositiveAnyToOccursAny : (as : List (Ty k)) -> i `NotPositiveInAny` as -> i `OccursInAny` as
notPositiveAny1ToOccursAny1 : (as : List1 (Ty k)) -> i `NotPositiveInAny1` as -> i `OccursInAny1` as

notPositiveToOccurs (TVar j) = absurd
notPositiveToOccurs TNat = id
notPositiveToOccurs (TArrow a b) = mapSnd (notPositiveToOccurs b)
notPositiveToOccurs (TUnion as) = notPositiveAny1ToOccursAny1 as
notPositiveToOccurs (TProd as) = notPositiveAnyToOccursAny as
notPositiveToOccurs (TSum as) = notPositiveAnyToOccursAny as
notPositiveToOccurs (TFix a) = id

notPositiveAnyToOccursAny [] = id
notPositiveAnyToOccursAny (a :: as) = bimap (notPositiveToOccurs a) (notPositiveAnyToOccursAny as)

notPositiveAny1ToOccursAny1 (a ::: as) = bimap (notPositiveToOccurs a) (notPositiveAnyToOccursAny as)

-- Decidable

notEnvPositiveIn : (i : Fin n) -> (a : Ty n) -> Bool
notEnvPositiveInAny : (i : Fin n) -> (as : List (Ty n)) -> Bool
notEnvPositiveInAny1 : (i : Fin n) -> (as : List1 (Ty n)) -> Bool

i `notEnvPositiveIn` (TVar j) = False
i `notEnvPositiveIn` TNat = False
i `notEnvPositiveIn` (TArrow a b) = (i `occursIn` a) || (i `notEnvPositiveIn` b)
i `notEnvPositiveIn` (TUnion as) = i `notEnvPositiveInAny1` as
i `notEnvPositiveIn` (TProd as) = i `notEnvPositiveInAny` as
i `notEnvPositiveIn` (TSum as) = i `notEnvPositiveInAny` as
i `notEnvPositiveIn` (TFix a) = FS i `occursIn` a

i `notEnvPositiveInAny` [] = False
i `notEnvPositiveInAny` (a :: as) = (i `notEnvPositiveIn` a) || (i `notEnvPositiveInAny` as)

i `notEnvPositiveInAny1` (a ::: as) = (i `notEnvPositiveIn` a) || (i `notEnvPositiveInAny` as)

reflectNotPositiveIn :
  (i : Fin n) -> (a : Ty n) ->
  (i `NotPositiveIn` a) `Reflects` (i `notEnvPositiveIn` a)
reflectNotPositiveInAny :
  (i : Fin n) -> (as : List (Ty n)) ->
  (i `NotPositiveInAny` as) `Reflects` (i `notEnvPositiveInAny` as)
reflectNotPositiveInAny1 :
  (i : Fin n) -> (as : List1 (Ty n)) ->
  (i `NotPositiveInAny1` as) `Reflects` (i `notEnvPositiveInAny1` as)

reflectNotPositiveIn i (TVar j) = RFalse id
reflectNotPositiveIn i TNat = RFalse id
reflectNotPositiveIn i (TArrow a b) =
  reflectThese (reflectOccursIn i a) (reflectNotPositiveIn i b)
reflectNotPositiveIn i (TUnion as) = reflectNotPositiveInAny1 i as
reflectNotPositiveIn i (TProd as) = reflectNotPositiveInAny i as
reflectNotPositiveIn i (TSum as) = reflectNotPositiveInAny i as
reflectNotPositiveIn i (TFix a) = reflectOccursIn (FS i) a

reflectNotPositiveInAny i [] = RFalse id
reflectNotPositiveInAny i (a :: as) =
  reflectThese (reflectNotPositiveIn i a) (reflectNotPositiveInAny i as)

reflectNotPositiveInAny1 i (a ::: as) =
  reflectThese (reflectNotPositiveIn i a) (reflectNotPositiveInAny i as)

-- Well Formed -----------------------------------------------------------------

-- Negating reflectidable properties is fun.

export
IllFormed : Ty n -> Type
AnyIllFormed : List (Ty n) -> Type
Any1IllFormed : List1 (Ty n) -> Type

IllFormed (TVar v) = Void
IllFormed TNat = Void
IllFormed (TArrow a b) = These (IllFormed a) (IllFormed b)
IllFormed (TUnion as) = Any1IllFormed as
IllFormed (TProd as) = AnyIllFormed as
IllFormed (TSum as) = AnyIllFormed as
IllFormed (TFix a) = These (FZ `NotPositiveIn` a) (IllFormed a)

AnyIllFormed [] = Void
AnyIllFormed (a :: as) = These (IllFormed a) (AnyIllFormed as)

Any1IllFormed (a ::: as) = These (IllFormed a) (AnyIllFormed as)

-- Decidable

export
illFormed : (a : Ty n) -> Bool
anyIllFormed : (as : List (Ty n)) -> Bool
any1IllFormed : (as : List1 (Ty n)) -> Bool


illFormed (TVar j) = False
illFormed TNat = False
illFormed (TArrow a b) = illFormed a || illFormed b
illFormed (TUnion as) = any1IllFormed as
illFormed (TProd as) = anyIllFormed as
illFormed (TSum as) = anyIllFormed as
illFormed (TFix a) = (FZ `notEnvPositiveIn` a) || illFormed a

anyIllFormed [] = False
anyIllFormed (a :: as) = illFormed a || anyIllFormed as

any1IllFormed (a ::: as) = illFormed a || anyIllFormed as

export
reflectIllFormed : (a : Ty n) -> IllFormed a `Reflects` illFormed a
reflectAnyIllFormed : (as : List (Ty n)) -> AnyIllFormed as `Reflects` anyIllFormed as
reflectAny1IllFormed : (as : List1 (Ty n)) -> Any1IllFormed as `Reflects` any1IllFormed as

reflectIllFormed (TVar j) = RFalse id
reflectIllFormed TNat = RFalse id
reflectIllFormed (TArrow a b) =
  reflectThese (reflectIllFormed a) (reflectIllFormed b)
reflectIllFormed (TUnion as) = reflectAny1IllFormed as
reflectIllFormed (TProd as) = reflectAnyIllFormed as
reflectIllFormed (TSum as) = reflectAnyIllFormed as
reflectIllFormed (TFix a) = reflectThese (reflectNotPositiveIn FZ a) (reflectIllFormed a)

reflectAnyIllFormed [] = RFalse id
reflectAnyIllFormed (a :: as) =
  reflectThese (reflectIllFormed a) (reflectAnyIllFormed as)

reflectAny1IllFormed (a ::: as) =
  reflectThese (reflectIllFormed a) (reflectAnyIllFormed as)

--------------------------------------------------------------------------------
-- Thinning --------------------------------------------------------------------
--------------------------------------------------------------------------------

thin : k `Thins` n -> Ty k -> Ty n
thinAll : k `Thins` n -> List (Ty k) -> List (Ty n)
thinAll1 : k `Thins` n -> List1 (Ty k) -> List1 (Ty n)

thin f (TVar i) = TVar (index f i)
thin f TNat = TNat
thin f (TArrow a b) = TArrow (thin f a) (thin f b)
thin f (TUnion as) = TUnion (thinAll1 f as)
thin f (TProd as) = TProd (thinAll f as)
thin f (TSum as) = TSum (thinAll f as)
thin f (TFix a) = TFix (thin (Keep f) a)

thinAll f [] = []
thinAll f (a :: as) = thin f a :: thinAll f as

thinAll1 f (a ::: as) = thin f a ::: thinAll f as

-- Renaming Coalgebra

thinCong : f ~~~ g -> (a : Ty k) -> thin f a = thin g a
thinCongAll : f ~~~ g -> (as : List (Ty k)) -> thinAll f as = thinAll g as
thinCongAll1 : f ~~~ g -> (as : List1 (Ty k)) -> thinAll1 f as = thinAll1 g as

thinCong prf (TVar i) = cong TVar (prf.index i)
thinCong prf TNat = Refl
thinCong prf (TArrow a b) = cong2 TArrow (thinCong prf a) (thinCong prf b)
thinCong prf (TUnion as) = cong TUnion (thinCongAll1 prf as)
thinCong prf (TProd as) = cong TProd (thinCongAll prf as)
thinCong prf (TSum as) = cong TSum (thinCongAll prf as)
thinCong prf (TFix a) = cong TFix (thinCong (KeepKeep prf) a)

thinCongAll prf [] = Refl
thinCongAll prf (a :: as) = cong2 (::) (thinCong prf a) (thinCongAll prf as)

thinCongAll1 prf (a ::: as) = cong2 (:::) (thinCong prf a) (thinCongAll prf as)

thinId : (a : Ty n) -> thin Id a = a
thinIdAll : (as : List (Ty n)) -> thinAll Id as = as
thinIdAll1 : (as : List1 (Ty n)) -> thinAll1 Id as = as

thinId (TVar i) = cong TVar (indexId i)
thinId TNat = Refl
thinId (TArrow a b) = cong2 TArrow (thinId a) (thinId b)
thinId (TUnion as) = cong TUnion (thinIdAll1 as)
thinId (TProd as) = cong TProd (thinIdAll as)
thinId (TSum as) = cong TSum (thinIdAll as)
thinId (TFix a) = cong TFix (trans (thinCong (KeepId IdId) a) (thinId a))

thinIdAll [] = Refl
thinIdAll (a :: as) = cong2 (::) (thinId a) (thinIdAll as)

thinIdAll1 (a ::: as) = cong2 (:::) (thinId a) (thinIdAll as)

export
Rename Ty where
  var = TVar
  rename = thin
  renameCong = thinCong
  renameId = thinId

-- Properties ------------------------------------------------------------------

-- Occurs --

thinOccursIn :
  (0 f : k `Thins` n) -> (0 i : Fin k) -> (a : Ty k) ->
  i `OccursIn` a ->
  index f i `OccursIn` thin f a
thinOccursInAny :
  (0 f : k `Thins` n) -> (0 i : Fin k) -> (as : List (Ty k)) ->
  i `OccursInAny` as ->
  index f i `OccursInAny` thinAll f as
thinOccursInAny1 :
  (0 f : k `Thins` n) -> (0 i : Fin k) -> (as : List1 (Ty k)) ->
  i `OccursInAny1` as ->
  index f i `OccursInAny1` thinAll1 f as

thinOccursIn f i (TVar x) = \Refl => Refl
thinOccursIn f i TNat = id
thinOccursIn f i (TArrow a b) = bimap (thinOccursIn f i a) (thinOccursIn f i b)
thinOccursIn f i (TUnion as) = thinOccursInAny1 f i as
thinOccursIn f i (TProd as) = thinOccursInAny f i as
thinOccursIn f i (TSum as) = thinOccursInAny f i as
thinOccursIn f i (TFix a) =
  rewrite sym $ indexKeepFS f i in
  thinOccursIn (Keep f) (FS i) a

thinOccursInAny f i [] = id
thinOccursInAny f i (a :: as) = bimap (thinOccursIn f i a) (thinOccursInAny f i as)

thinOccursInAny1 f i (a ::: as) = bimap (thinOccursIn f i a) (thinOccursInAny f i as)

-- Inverse

thinOccursInInv' :
  (0 f : k `Thins` n) -> (0 i : Fin n) ->
  (a : Ty k) ->
  i `OccursIn` thin f a ->
  (j ** (index f j = i, j `OccursIn` a))
thinOccursInAnyInv' :
  (0 f : k `Thins` n) -> (0 i : Fin n) ->
  (as : List (Ty k)) ->
  i `OccursInAny` thinAll f as ->
  (j ** (index f j = i, j `OccursInAny` as))
thinOccursInAny1Inv' :
  (0 f : k `Thins` n) -> (0 i : Fin n) ->
  (as : List1 (Ty k)) ->
  i `OccursInAny1` thinAll1 f as ->
  (j ** (index f j = i, j `OccursInAny1` as))

thinOccursInInv' f i (TVar j) = \eq => (j ** (sym eq , Refl))
thinOccursInInv' f i TNat = absurd
thinOccursInInv' f i (TArrow a b) =
  these
    (\occurs =>
      let (j ** (eq, prf)) = thinOccursInInv' f i a occurs in
      (j ** (eq, This prf)))
    (\occurs =>
      let (j ** (eq, prf)) = thinOccursInInv' f i b occurs in
      (j ** (eq, That prf)))
    (\occurs1, occurs2 =>
      let (j1 ** (eq1, prf1)) = thinOccursInInv' f i a occurs1 in
      let (j2 ** (eq2, prf2)) = thinOccursInInv' f i b occurs2 in
      (j1 ** (eq1,
        Both prf1 $
        rewrite indexInjective f {x = j1, y = j2} $ trans eq1 (sym eq2) in
        prf2)))
thinOccursInInv' f i (TUnion as) = thinOccursInAny1Inv' f i as
thinOccursInInv' f i (TProd as) = thinOccursInAnyInv' f i as
thinOccursInInv' f i (TSum as) = thinOccursInAnyInv' f i as
thinOccursInInv' f i (TFix a) =
  \occurs =>
    case thinOccursInInv' (Keep f) (FS i) a occurs of
      (FZ ** prf) => absurd (trans (sym $ indexKeepFZ f) (fst prf))
      (FS j ** (eq, prf)) =>
        (j ** (irrelevantEq (injective $ trans (sym $ indexKeepFS f j) eq), prf))

thinOccursInAnyInv' f i [] = absurd
thinOccursInAnyInv' f i (a :: as) =
  these
    (\occurs =>
      let (j ** (eq, prf)) = thinOccursInInv' f i a occurs in
      (j ** (eq, This prf)))
    (\occurs =>
      let (j ** (eq, prf)) = thinOccursInAnyInv' f i as occurs in
      (j ** (eq, That prf)))
    (\occurs1, occurs2 =>
      let (j1 ** (eq1, prf1)) = thinOccursInInv' f i a occurs1 in
      let (j2 ** (eq2, prf2)) = thinOccursInAnyInv' f i as occurs2 in
      (j1 ** (eq1,
        Both prf1 $
        rewrite indexInjective f {x = j1, y = j2} $ trans eq1 (sym eq2) in
        prf2)))

thinOccursInAny1Inv' f i (a ::: as) =
  these
    (\occurs =>
      let (j ** (eq, prf)) = thinOccursInInv' f i a occurs in
      (j ** (eq, This prf)))
    (\occurs =>
      let (j ** (eq, prf)) = thinOccursInAnyInv' f i as occurs in
      (j ** (eq, That prf)))
    (\occurs1, occurs2 =>
      let (j1 ** (eq1, prf1)) = thinOccursInInv' f i a occurs1 in
      let (j2 ** (eq2, prf2)) = thinOccursInAnyInv' f i as occurs2 in
      (j1 ** (eq1,
        Both prf1 $
        rewrite indexInjective f {x = j1, y = j2} $ trans eq1 (sym eq2) in
        prf2)))

thinOccursInInv :
  (0 f : k `Thins` n) -> (0 i : Fin k) -> (a : Ty k) ->
  index f i `OccursIn` thin f a ->
  i `OccursIn` a
thinOccursInInv f i a occurs =
  let (j ** (eq, prf)) = thinOccursInInv' f (index f i) a occurs in
  rewrite indexInjective f {x = i, y = j} $ sym eq in
  prf

thinOccursInAny1Inv :
  (0 f : k `Thins` n) -> (0 i : Fin k) -> (as : List1 (Ty k)) ->
  index f i `OccursInAny1` thinAll1 f as ->
  i `OccursInAny1` as
thinOccursInAny1Inv f i as occurs =
  let (j ** (eq, prf)) = thinOccursInAny1Inv' f (index f i) as occurs in
  rewrite indexInjective f {x = i, y = j} $ sym eq in
  prf

-- Not Positive --

thinNotPositiveInv :
  (0 f : k `Thins` n) -> (0 i : Fin k) -> (a : Ty k) ->
  index f i `NotPositiveIn` thin f a -> i `NotPositiveIn` a
thinNotPositiveAnyInv :
  (0 f : k `Thins` n) -> (0 i : Fin k) -> (as : List (Ty k)) ->
  index f i `NotPositiveInAny` thinAll f as -> i `NotPositiveInAny` as
thinNotPositiveAny1Inv :
  (0 f : k `Thins` n) -> (0 i : Fin k) -> (as : List1 (Ty k)) ->
  index f i `NotPositiveInAny1` thinAll1 f as -> i `NotPositiveInAny1` as

thinNotPositiveInv f i (TVar j) = id
thinNotPositiveInv f i TNat = id
thinNotPositiveInv f i (TArrow a b) =
  bimap
    (thinOccursInInv f i a)
    (thinNotPositiveInv f i b)
thinNotPositiveInv f i (TUnion as) = thinNotPositiveAny1Inv f i as
thinNotPositiveInv f i (TProd as) = thinNotPositiveAnyInv f i as
thinNotPositiveInv f i (TSum as) = thinNotPositiveAnyInv f i as
thinNotPositiveInv f i (TFix a) =
  \occurs =>
    thinOccursInInv (Keep f) (FS i) a $
    rewrite indexKeepFS f i in
    occurs

thinNotPositiveAnyInv f i [] = id
thinNotPositiveAnyInv f i (a :: as) =
  bimap (thinNotPositiveInv f i a) (thinNotPositiveAnyInv f i as)

thinNotPositiveAny1Inv f i (a ::: as) =
  bimap (thinNotPositiveInv f i a) (thinNotPositiveAnyInv f i as)

-- Ill Formed --

thinIllFormedInv :
  (0 f : k `Thins` n) -> (a : Ty k) ->
  IllFormed (thin f a) -> IllFormed a
thinAnyIllFormedInv :
  (0 f : k `Thins` n) -> (as : List (Ty k)) ->
  AnyIllFormed (thinAll f as) -> AnyIllFormed as
thinAny1IllFormedInv :
  (0 f : k `Thins` n) -> (as : List1 (Ty k)) ->
  Any1IllFormed (thinAll1 f as) -> Any1IllFormed as

thinIllFormedInv f (TVar i) = id
thinIllFormedInv f TNat = id
thinIllFormedInv f (TArrow a b) = bimap (thinIllFormedInv f a) (thinIllFormedInv f b)
thinIllFormedInv f (TUnion as) = thinAny1IllFormedInv f as
thinIllFormedInv f (TProd as) = thinAnyIllFormedInv f as
thinIllFormedInv f (TSum as) = thinAnyIllFormedInv f as
thinIllFormedInv f (TFix a) =
  bimap
    (\npos => thinNotPositiveInv (Keep f) FZ a $ rewrite indexKeepFZ f in npos)
    (thinIllFormedInv (Keep f) a)

thinAnyIllFormedInv f [] = id
thinAnyIllFormedInv f (a :: as) = bimap (thinIllFormedInv f a) (thinAnyIllFormedInv f as)

thinAny1IllFormedInv f (a ::: as) = bimap (thinIllFormedInv f a) (thinAnyIllFormedInv f as)

--------------------------------------------------------------------------------
-- Substitution ----------------------------------------------------------------
--------------------------------------------------------------------------------

public export
fromVar : Either (Fin n) (Ty n) -> Ty n
fromVar = either TVar id

export
sub : Env k n (Ty n) -> Ty k -> Ty n
subAll : Env k n (Ty n) -> List (Ty k) -> List (Ty n)
subAll1 : Env k n (Ty n) -> List1 (Ty k) -> List1 (Ty n)

sub env (TVar i) = fromVar $ lookup env i
sub env TNat = TNat
sub env (TArrow a b) = TArrow (sub env a) (sub env b)
sub env (TUnion as) = TUnion (subAll1 env as)
sub env (TProd as) = TProd (subAll env as)
sub env (TSum as) = TSum (subAll env as)
sub env (TFix a) = TFix (sub (lift (Drop Id) env :< TVar FZ) a)

subAll env [] = []
subAll env (a :: as) = sub env a :: subAll env as

subAll1 env (a ::: as) = sub env a ::: subAll env as

-- Properties ------------------------------------------------------------------

pushEither :
  (0 f : c -> d) -> (0 g : a -> c) -> (0 h : b -> c) -> (x : Either a b) ->
  f (either g h x) = either (f . g) (f . h) x
pushEither f g h (Left x) = Refl
pushEither f g h (Right x) = Refl

-- Occurs --

subOccursIn :
  (env : Env k n (Ty n)) -> (i : Fin k) -> (a : Ty k) ->
  j `OccursIn` fromVar (lookup env i) ->
  i `OccursIn` a ->
  j `OccursIn` sub env a
subOccursInAny :
  (env : Env k n (Ty n)) -> (i : Fin k) -> (as : List (Ty k)) ->
  j `OccursIn` fromVar (lookup env i) ->
  i `OccursInAny` as ->
  j `OccursInAny` subAll env as
subOccursInAny1 :
  (env : Env k n (Ty n)) -> (i : Fin k) -> (as : List1 (Ty k)) ->
  j `OccursIn` fromVar (lookup env i) ->
  i `OccursInAny1` as ->
  j `OccursInAny1` subAll1 env as

subOccursIn env i (TVar x) occurs = \Refl => occurs
subOccursIn env i TNat occurs = id
subOccursIn env i (TArrow a b) occurs =
  bimap
    (subOccursIn env i a occurs)
    (subOccursIn env i b occurs)
subOccursIn env i (TUnion as) occurs = subOccursInAny1 env i as occurs
subOccursIn env i (TProd as) occurs = subOccursInAny env i as occurs
subOccursIn env i (TSum as) occurs = subOccursInAny env i as occurs
subOccursIn env i (TFix a) occurs =
  subOccursIn (lift (Drop Id) env :< TVar FZ) (FS i) a {j = FS j} $
    rewrite lookupFS (lift (Drop Id) env) (TVar FZ) i in
    rewrite lookupLift (Drop Id) env i in
    rewrite eitherBimapFusion TVar id (index (Drop Id)) (thin (Drop Id)) (lookup env i) in
    rewrite sym $ pushEither (thin (Drop Id)) TVar id (lookup env i) in
    rewrite sym $ indexId j in
    rewrite sym $ indexDrop Id j in
    thinOccursIn (Drop Id) j (fromVar $ lookup env i) $
    occurs

subOccursInAny env i [] occurs = id
subOccursInAny env i (a :: as) occurs =
  bimap (subOccursIn env i a occurs) (subOccursInAny env i as occurs)

subOccursInAny1 env i (a ::: as) occurs =
  bimap (subOccursIn env i a occurs) (subOccursInAny env i as occurs)

-- Inverse

0 EnvOccursUniq : Env k n (Ty n) -> (i : Fin n) -> (j : Fin k) -> Type
EnvOccursUniq env i j = (x : Fin k) -> i `OccursIn` fromVar (lookup env x) -> j = x

liftEnvOccursUniq :
  (0 env : Env k n (Ty n)) ->
  EnvOccursUniq env i j ->
  EnvOccursUniq (lift (Drop Id) env :< TVar FZ) (FS i) (FS j)
liftEnvOccursUniq env prf FZ =
  rewrite lookupFZ (lift (Drop Id) env) (TVar FZ) in
  absurd
liftEnvOccursUniq env prf (FS x) =
  rewrite lookupFS (lift (Drop Id) env) (TVar FZ) x in
  rewrite lookupLift (Drop Id) env x in
  rewrite eitherBimapFusion TVar id (index (Drop Id)) (rename (Drop Id)) (lookup env x) in
  \occurs =>
  cong FS $
  prf x $
  thinOccursInInv (Drop Id) i (fromVar $ lookup env x) $
  rewrite pushEither (rename (Drop Id)) TVar id (lookup env x) in
  rewrite indexDrop Id i in
  rewrite indexId i in
  occurs

liftOccursUniqFZ :
  (env : Env k n (Ty n)) ->
  EnvOccursUniq (lift (Drop Id) env :< TVar FZ) FZ FZ
liftOccursUniqFZ env FZ =
  rewrite lookupFZ (lift (Drop Id) env) (TVar FZ) in
  const Refl
liftOccursUniqFZ env (FS x) =
  rewrite lookupFS (lift (Drop Id) env) (TVar FZ) x in
  rewrite lookupLift (Drop Id) env x in
  rewrite eitherBimapFusion TVar id (index (Drop Id)) (rename (Drop Id)) (lookup env x) in
  \occurs =>
  let
    (j ** (eq, occurs')) =
      thinOccursInInv' (Drop Id) FZ (fromVar $ lookup env x) $
      rewrite pushEither (rename (Drop Id)) TVar id (lookup env x) in
      occurs
  in
  absurd $ trans (sym eq) (indexDrop Id j)

subOccursInInv :
  (0 env : Env k n (Ty n)) ->
  (0 prf : EnvOccursUniq env i j) ->
  (a : Ty k) ->
  i `OccursIn` sub env a -> j `OccursIn` a
subOccursInAnyInv :
  (0 env : Env k n (Ty n)) ->
  (0 prf : EnvOccursUniq env i j) ->
  (as : List (Ty k)) ->
  i `OccursInAny` subAll env as -> j `OccursInAny` as
subOccursInAny1Inv :
  (0 env : Env k n (Ty n)) ->
  (0 prf : EnvOccursUniq env i j) ->
  (as : List1 (Ty k)) ->
  i `OccursInAny1` subAll1 env as -> j `OccursInAny1` as

subOccursInInv env prf (TVar x) = \p => irrelevantEq $ prf x p
subOccursInInv env prf TNat = id
subOccursInInv env prf (TArrow a b) =
  bimap
    (subOccursInInv env prf a)
    (subOccursInInv env prf b)
subOccursInInv env prf (TUnion as) = subOccursInAny1Inv env prf as
subOccursInInv env prf (TProd as) = subOccursInAnyInv env prf as
subOccursInInv env prf (TSum as) = subOccursInAnyInv env prf as
subOccursInInv env prf (TFix a) =
  subOccursInInv
    (lift (Drop Id) env :< TVar FZ)
    (liftEnvOccursUniq env prf)
    a

subOccursInAnyInv env prf [] = id
subOccursInAnyInv env prf (a :: as) =
  bimap
    (subOccursInInv env prf a)
    (subOccursInAnyInv env prf as)

subOccursInAny1Inv env prf (a ::: as) =
  bimap
    (subOccursInInv env prf a)
    (subOccursInAnyInv env prf as)


-- Not Positive --

subNotPositiveIn :
  (env : Env k n (Ty n)) -> (i : Fin k) -> (a : Ty k) ->
  j `OccursIn` fromVar (lookup env i) ->
  i `NotPositiveIn` a ->
  j `NotPositiveIn` sub env a
subNotPositiveInAny :
  (env : Env k n (Ty n)) -> (i : Fin k) -> (as : List (Ty k)) ->
  j `OccursIn` fromVar (lookup env i) ->
  i `NotPositiveInAny` as ->
  j `NotPositiveInAny` subAll env as
subNotPositiveInAny1 :
  (env : Env k n (Ty n)) -> (i : Fin k) -> (as : List1 (Ty k)) ->
  j `OccursIn` fromVar (lookup env i) ->
  i `NotPositiveInAny1` as ->
  j `NotPositiveInAny1` subAll1 env as

subNotPositiveIn env i (TVar x) occurs = absurd
subNotPositiveIn env i TNat occurs = id
subNotPositiveIn env i (TArrow a b) occurs =
  bimap
    (subOccursIn env i a occurs)
    (subNotPositiveIn env i b occurs)
subNotPositiveIn env i (TUnion as) occurs = subNotPositiveInAny1 env i as occurs
subNotPositiveIn env i (TProd as) occurs = subNotPositiveInAny env i as occurs
subNotPositiveIn env i (TSum as) occurs = subNotPositiveInAny env i as occurs
subNotPositiveIn env i (TFix a) occurs =
  subOccursIn (lift (Drop Id) env :< TVar FZ) (FS i) a {j = FS j} $
    rewrite lookupFS (lift (Drop Id) env) (TVar FZ) i in
    rewrite lookupLift (Drop Id) env i in
    rewrite eitherBimapFusion TVar id (index (Drop Id)) (thin (Drop Id)) (lookup env i) in
    rewrite sym $ pushEither (thin (Drop Id)) TVar id (lookup env i) in
    rewrite sym $ indexId j in
    rewrite sym $ indexDrop Id j in
    thinOccursIn (Drop Id) j (fromVar $ lookup env i) $
    occurs

subNotPositiveInAny env i [] occurs = id
subNotPositiveInAny env i (a :: as) occurs =
  bimap
    (subNotPositiveIn env i a occurs)
    (subNotPositiveInAny env i as occurs)

subNotPositiveInAny1 env i (a ::: as) occurs =
  bimap
    (subNotPositiveIn env i a occurs)
    (subNotPositiveInAny env i as occurs)

-- Inverse

0 EnvPositiveIn : Env k n (Ty n) -> (i : Fin n) -> Type
EnvPositiveIn env i = (x : Fin k) -> Not (i `NotPositiveIn` fromVar (lookup env x))

liftPositiveInFZ :
  (env : Env k n (Ty n)) ->
  EnvPositiveIn (lift (Drop Id) env :< TVar FZ) FZ
liftPositiveInFZ env FZ =
  rewrite lookupFZ (lift (Drop Id) env) (TVar FZ) in
  id
liftPositiveInFZ env (FS x) =
  rewrite lookupFS (lift (Drop Id) env) (TVar FZ) x in
  rewrite lookupLift (Drop Id) env x in
  rewrite eitherBimapFusion TVar id (index (Drop Id)) (rename (Drop Id)) (lookup env x) in
  \npos =>
  let
    (j ** (eq, occurs)) =
      thinOccursInInv' (Drop Id) FZ (fromVar $ lookup env x) $
      rewrite pushEither (thin (Drop Id)) TVar id (lookup env x) in
      notPositiveToOccurs _ npos
  in
  absurd $ trans (sym (indexDrop Id j)) eq

subNotPositiveInInv :
  (0 env : Env k n (Ty n)) ->
  (0 prf1 : EnvPositiveIn env i) ->
  (0 prf2 : EnvOccursUniq env i j) ->
  (a : Ty k) ->
  i `NotPositiveIn` sub env a -> j `NotPositiveIn` a
subNotPositiveInAnyInv :
  (0 env : Env k n (Ty n)) ->
  (0 prf1 : EnvPositiveIn env i) ->
  (0 prf2 : EnvOccursUniq env i j) ->
  (as : List (Ty k)) ->
  i `NotPositiveInAny` subAll env as -> j `NotPositiveInAny` as
subNotPositiveInAny1Inv :
  (0 env : Env k n (Ty n)) ->
  (0 prf1 : EnvPositiveIn env i) ->
  (0 prf2 : EnvOccursUniq env i j) ->
  (as : List1 (Ty k)) ->
  i `NotPositiveInAny1` subAll1 env as -> j `NotPositiveInAny1` as

subNotPositiveInInv env prf1 prf2 (TVar x) = \npos => void $ prf1 x npos
subNotPositiveInInv env prf1 prf2 TNat = id
subNotPositiveInInv env prf1 prf2 (TArrow a b) =
  bimap
    (subOccursInInv env prf2 a)
    (subNotPositiveInInv env prf1 prf2 b)
subNotPositiveInInv env prf1 prf2 (TUnion as) = subNotPositiveInAny1Inv env prf1 prf2 as
subNotPositiveInInv env prf1 prf2 (TProd as) = subNotPositiveInAnyInv env prf1 prf2 as
subNotPositiveInInv env prf1 prf2 (TSum as) = subNotPositiveInAnyInv env prf1 prf2 as
subNotPositiveInInv env prf1 prf2 (TFix a) =
  subOccursInInv
    (lift (Drop Id) env :< TVar FZ)
    (liftEnvOccursUniq env prf2)
    a

subNotPositiveInAnyInv env prf1 prf2 [] = id
subNotPositiveInAnyInv env prf1 prf2 (a :: as) =
  bimap
    (subNotPositiveInInv env prf1 prf2 a)
    (subNotPositiveInAnyInv env prf1 prf2 as)

subNotPositiveInAny1Inv env prf1 prf2 (a ::: as) =
  bimap
    (subNotPositiveInInv env prf1 prf2 a)
    (subNotPositiveInAnyInv env prf1 prf2 as)

-- Ill Formed --

subIllFormed :
  (env : Env k n (Ty n)) -> (a : Ty k) ->
  IllFormed a -> IllFormed (sub env a)
subAnyIllFormed :
  (env : Env k n (Ty n)) -> (as : List (Ty k)) ->
  AnyIllFormed as -> AnyIllFormed (subAll env as)
subAny1IllFormed :
  (env : Env k n (Ty n)) -> (as : List1 (Ty k)) ->
  Any1IllFormed as -> Any1IllFormed (subAll1 env as)

subIllFormed env (TVar i) = absurd
subIllFormed env TNat = id
subIllFormed env (TArrow a b) = bimap (subIllFormed env a) (subIllFormed env b)
subIllFormed env (TUnion as) = subAny1IllFormed env as
subIllFormed env (TProd as) = subAnyIllFormed env as
subIllFormed env (TSum as) = subAnyIllFormed env as
subIllFormed env (TFix a) =
  bimap
    (subNotPositiveIn (lift (Drop Id) env :< TVar FZ) FZ a $
      rewrite lookupFZ (lift (Drop Id) env) (TVar FZ) in
      Refl)
    (subIllFormed (lift (Drop Id) env :< TVar FZ) a)

subAnyIllFormed env [] = id
subAnyIllFormed env (a :: as) = bimap (subIllFormed env a) (subAnyIllFormed env as)

subAny1IllFormed env (a ::: as) = bimap (subIllFormed env a) (subAnyIllFormed env as)

-- Inverse

export
0 EnvWellFormed : Env k n (Ty n) -> Type
EnvWellFormed env = (x : Fin k) -> Not (IllFormed $ fromVar $ lookup env x)

liftEnvWellFormed :
  (env : Env k n (Ty n)) ->
  EnvWellFormed env ->
  EnvWellFormed (lift (Drop Id) env :< TVar FZ)
liftEnvWellFormed env prf FZ =
  rewrite lookupFZ (lift (Drop Id) env) (TVar FZ) in
  id
liftEnvWellFormed env prf (FS x) =
  rewrite lookupFS (lift (Drop Id) env) (TVar FZ) x in
  rewrite lookupLift (Drop Id) env x in
  rewrite eitherBimapFusion TVar id (index (Drop Id)) (rename (Drop Id)) (lookup env x) in
  \ill =>
  prf x $
  thinIllFormedInv (Drop Id) (either TVar id $ lookup env x) $
  rewrite pushEither (thin (Drop Id)) TVar id (lookup env x) in
  ill

subIllFormedInv :
  (0 env : Env k n (Ty n)) ->
  (0 prf : EnvWellFormed env) ->
  (a : Ty k) ->
  IllFormed (sub env a) -> IllFormed a
subAnyIllFormedInv :
  (0 env : Env k n (Ty n)) ->
  (0 prf : EnvWellFormed env) ->
  (as : List (Ty k)) ->
  AnyIllFormed (subAll env as) -> AnyIllFormed as
subAny1IllFormedInv :
  (0 env : Env k n (Ty n)) ->
  (0 prf : EnvWellFormed env) ->
  (as : List1 (Ty k)) ->
  Any1IllFormed (subAll1 env as) -> Any1IllFormed as

subIllFormedInv env prf (TVar i) = \ill => void $ prf i ill
subIllFormedInv env prf TNat = id
subIllFormedInv env prf (TArrow a b) =
  bimap
    (subIllFormedInv env prf a)
    (subIllFormedInv env prf b)
subIllFormedInv env prf (TUnion as) = subAny1IllFormedInv env prf as
subIllFormedInv env prf (TProd as) = subAnyIllFormedInv env prf as
subIllFormedInv env prf (TSum as) = subAnyIllFormedInv env prf as
subIllFormedInv env prf (TFix a) =
  bimap
    (subNotPositiveInInv
      (lift (Drop Id) env :< TVar FZ)
      (liftPositiveInFZ env)
      (liftOccursUniqFZ env)
      a)
    (subIllFormedInv
      (lift (Drop Id) env :< TVar FZ)
      (liftEnvWellFormed env prf)
      a)

subAnyIllFormedInv env prf [] = id
subAnyIllFormedInv env prf (a :: as) =
  bimap
    (subIllFormedInv env prf a)
    (subAnyIllFormedInv env prf as)

subAny1IllFormedInv env prf (a ::: as) =
  bimap
    (subIllFormedInv env prf a)
    (subAnyIllFormedInv env prf as)

-- Equivalent

export
subIllFormedEquiv :
  (env : Env k n (Ty n)) ->
  (0 prf : EnvWellFormed env) ->
  (a : Ty k) ->
  IllFormed a <=> IllFormed (sub env a)
subIllFormedEquiv env prf a =
  MkEquivalence
    { leftToRight = subIllFormed env a
    , rightToLeft = subIllFormedInv env prf a
    }