1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
|
module Inky.Type
import public Inky.Data.Context.Var
import public Inky.Data.Row
import public Inky.Data.SnocList.Var
import Control.Function
import Data.DPair
import Data.These
import Inky.Data.SnocList.Thinning
import Inky.Data.Thinned
import Inky.Decidable
import Inky.Decidable.Maybe
%hide Prelude.Ops.infixl.(>=>)
-- Definition ------------------------------------------------------------------
public export
data Ty : SnocList String -> Type where
TVar : Var ctx -> Ty ctx
TArrow : Ty ctx -> Ty ctx -> Ty ctx
TProd : (as : Row (Ty ctx)) -> Ty ctx
TSum : (as : Row (Ty ctx)) -> Ty ctx
TFix : (x : String) -> Ty (ctx :< x) -> Ty ctx
%name Ty a, b, c
export
Injective TProd where
injective Refl = Refl
export
Injective TSum where
injective Refl = Refl
export
fixInjective : TFix x t = TFix y u -> the (x ** Ty (ctx :< x)) (x ** t) = (y ** u)
fixInjective Refl = Refl
-- Decisions -------------------------------------------------------------------
export
Uninhabited (TVar i = TArrow a b) where
uninhabited Refl impossible
export
Uninhabited (TVar i = TProd as) where
uninhabited Refl impossible
export
Uninhabited (TVar i = TSum as) where
uninhabited Refl impossible
export
Uninhabited (TVar i = TFix x a) where
uninhabited Refl impossible
export
Uninhabited (TArrow a b = TProd as) where
uninhabited Refl impossible
export
Uninhabited (TArrow a b = TSum as) where
uninhabited Refl impossible
export
Uninhabited (TArrow a b = TFix x c) where
uninhabited Refl impossible
export
Uninhabited (TProd as = TArrow a b) where
uninhabited Refl impossible
export
Uninhabited (TProd as = TSum bs) where
uninhabited Refl impossible
export
Uninhabited (TProd as = TFix x a) where
uninhabited Refl impossible
export
Uninhabited (TSum as = TArrow a b) where
uninhabited Refl impossible
export
Uninhabited (TSum as = TProd bs) where
uninhabited Refl impossible
export
Uninhabited (TSum as = TFix x a) where
uninhabited Refl impossible
export
Uninhabited (TFix x a = TArrow b c) where
uninhabited Refl impossible
export
Uninhabited (TFix x a = TProd as) where
uninhabited Refl impossible
export
Uninhabited (TFix x a = TSum as) where
uninhabited Refl impossible
public export
isArrow :
(a : Ty ctx) ->
Proof (Ty ctx, Ty ctx) (\bc => a = TArrow (fst bc) (snd bc))
((b, c : Ty ctx) -> Not (a = TArrow b c))
isArrow (TVar i) = Nothing `Because` (\_, _ => absurd)
isArrow (TArrow a b) = Just (a, b) `Because` Refl
isArrow (TProd as) = Nothing `Because` (\_, _ => absurd)
isArrow (TSum as) = Nothing `Because` (\_, _ => absurd)
isArrow (TFix x a) = Nothing `Because` (\_, _ => absurd)
public export
isProd : (a : Ty ctx) -> DecWhen (Row (Ty ctx)) (\as => a = TProd as)
isProd (TVar i) = Nothing `Because` (\_ => absurd)
isProd (TArrow a b) = Nothing `Because` (\_ => absurd)
isProd (TProd as) = Just as `Because` Refl
isProd (TSum as) = Nothing `Because` (\_ => absurd)
isProd (TFix x a) = Nothing `Because` (\_ => absurd)
public export
isSum : (a : Ty ctx) -> DecWhen (Row (Ty ctx)) (\as => a = TSum as)
isSum (TVar i) = Nothing `Because` (\_ => absurd)
isSum (TArrow a b) = Nothing `Because` (\_ => absurd)
isSum (TProd as) = Nothing `Because` (\_ => absurd)
isSum (TSum as) = Just as `Because` Refl
isSum (TFix x a) = Nothing `Because` (\_ => absurd)
public export
isFix :
(a : Ty ctx) ->
Proof (x ** Ty (ctx :< x)) (\xb => a = TFix (fst xb) (snd xb))
((x : _) -> (b : _) -> Not (a = TFix x b))
isFix (TVar i) = Nothing `Because` (\_, _ => absurd)
isFix (TArrow a b) = Nothing `Because` (\_, _ => absurd)
isFix (TProd as) = Nothing `Because` (\_, _ => absurd)
isFix (TSum as) = Nothing `Because` (\_, _ => absurd)
isFix (TFix x a) = Just (x ** a) `Because` Refl
-- Thinning --------------------------------------------------------------------
thin : ctx1 `Thins` ctx2 -> Ty ctx1 -> Ty ctx2
thinAll : ctx1 `Thins` ctx2 -> Context (Ty ctx1) -> Context (Ty ctx2)
thinAllNames :
(f : ctx1 `Thins` ctx2) ->
(ctx : Context (Ty ctx1)) ->
(thinAll f ctx).names = ctx.names
thin f (TVar i) = TVar (index f i)
thin f (TArrow a b) = TArrow (thin f a) (thin f b)
thin f (TProd (MkRow as fresh)) = TProd (MkRow (thinAll f as) (rewrite thinAllNames f as in fresh))
thin f (TSum (MkRow as fresh)) = TSum (MkRow (thinAll f as) (rewrite thinAllNames f as in fresh))
thin f (TFix x a) = TFix x (thin (Keep f) a)
thinAll f [<] = [<]
thinAll f (as :< (n :- a)) = thinAll f as :< (n :- thin f a)
thinAllNames f [<] = Refl
thinAllNames f (as :< (n :- a)) = cong (:< n) $ thinAllNames f as
-- Renaming Coalgebra
thinCong : f ~~~ g -> (a : Ty ctx1) -> thin f a = thin g a
thinCongAll : f ~~~ g -> (as : Context (Ty ctx1)) -> thinAll f as = thinAll g as
thinCong prf (TVar i) = cong TVar (prf.index i)
thinCong prf (TArrow a b) = cong2 TArrow (thinCong prf a) (thinCong prf b)
thinCong prf (TProd (MkRow as fresh)) = cong TProd (rowCong $ thinCongAll prf as)
thinCong prf (TSum (MkRow as fresh)) = cong TSum (rowCong $ thinCongAll prf as)
thinCong prf (TFix x a) = cong (TFix x) (thinCong (KeepKeep prf) a)
thinCongAll prf [<] = Refl
thinCongAll prf (as :< (n :- a)) =
cong2 (:<) (thinCongAll prf as) (cong (n :-) $ thinCong prf a)
thinId : (a : Ty ctx) -> thin Id a = a
thinIdAll : (as : Context (Ty ctx)) -> thinAll Id as = as
thinId (TVar (%% x)) = Refl
thinId (TArrow a b) = cong2 TArrow (thinId a) (thinId b)
thinId (TProd (MkRow as fresh)) = cong TProd (rowCong $ thinIdAll as)
thinId (TSum (MkRow as fresh)) = cong TSum (rowCong $ thinIdAll as)
thinId (TFix x a) = cong (TFix x) (trans (thinCong (KeepId IdId) a) (thinId a))
thinIdAll [<] = Refl
thinIdAll (as :< (n :- a)) = cong2 (:<) (thinIdAll as) (cong (n :-) $ thinId a)
export
Rename String Ty where
rename = thin
renameCong = thinCong
renameId = thinId
-- Alpha Equivalence ------------------------------------------------------------
namespace Shape
public export
data SameShape : Ty ctx1 -> Ty ctx2 -> Type where
TVar : SameShape (TVar i) (TVar j)
TArrow : SameShape (TArrow a c) (TArrow b d)
TProd : SameShape (TProd as) (TProd bs)
TSum : SameShape (TSum as) (TSum bs)
TFix : SameShape (TFix x a) (TFix y b)
export
Uninhabited (SameShape (TVar i) (TArrow b d))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TVar i) (TProd bs))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TVar i) (TSum bs))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TVar i) (TFix y b))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TArrow a b) (TVar j))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TArrow a c) (TProd bs))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TArrow a c) (TSum bs))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TArrow a c) (TFix y b))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TProd as) (TVar j))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TProd as) (TArrow b d))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TProd as) (TSum bs))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TProd as) (TFix y b))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TSum as) (TVar j))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TSum as) (TArrow b d))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TSum as) (TProd bs))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TSum as) (TFix y b))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TFix x a) (TVar j))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TFix x a) (TArrow b d))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TFix x a) (TProd bs))
where uninhabited TVar impossible
export
Uninhabited (SameShape (TFix x a) (TSum bs))
where uninhabited TVar impossible
namespace Equivalence
public export
data Alpha : Ty ctx1 -> Ty ctx2 -> Type
public export
data AllAlpha : Context (Ty ctx1) -> Context (Ty ctx2) -> Type
data Alpha where
TVar : elemToNat i.pos = elemToNat j.pos -> Alpha (TVar i) (TVar j)
TArrow : Alpha a b -> Alpha c d -> Alpha (TArrow a c) (TArrow b d)
TProd : AllAlpha as.context bs.context -> Alpha (TProd as) (TProd bs)
TSum : AllAlpha as.context bs.context -> Alpha (TSum as) (TSum bs)
TFix : Alpha a b -> Alpha (TFix x a) (TFix y b)
data AllAlpha where
Base : AllAlpha [<] [<]
Step :
(i : Elem (n :- b) bs) ->
Alpha a b ->
AllAlpha as (dropElem bs i) ->
AllAlpha (as :< (n :- a)) bs
namespace Inequivalence
public export
data NotAlpha : Ty ctx1 -> Ty ctx2 -> Type
public export
data AnyNotAlpha : Context (Ty ctx1) -> Context (Ty ctx2) -> Type
data NotAlpha where
Shape :
Not (SameShape a b) ->
NotAlpha a b
TVar :
Not (elemToNat i.pos = elemToNat j.pos) ->
NotAlpha (TVar i) (TVar j)
TArrow :
These (NotAlpha a b) (NotAlpha c d) ->
NotAlpha (TArrow a c) (TArrow b d)
TProd :
AnyNotAlpha as.context bs.context ->
NotAlpha (TProd as) (TProd bs)
TSum :
AnyNotAlpha as.context bs.context ->
NotAlpha (TSum as) (TSum bs)
TFix :
NotAlpha a b ->
NotAlpha (TFix x a) (TFix y b)
data AnyNotAlpha where
Base : AnyNotAlpha [<] (bs :< b)
Step1 :
((b : Ty ctx2) -> Not (Elem (n :- b) bs)) ->
AnyNotAlpha (as :< (n :- a)) bs
Step2 :
(i : Elem (n :- b) bs) ->
These (NotAlpha a b) (AnyNotAlpha as (dropElem bs i)) ->
AnyNotAlpha (as :< (n :- a)) bs
%name Alpha prf
%name AllAlpha prfs
%name NotAlpha contra
%name AnyNotAlpha contras
export
alphaShape : Alpha a b -> SameShape a b
alphaShape (TVar prf) = TVar
alphaShape (TArrow prf1 prf2) = TArrow
alphaShape (TProd prfs) = TProd
alphaShape (TSum prfs) = TSum
alphaShape (TFix prf) = TFix
export
alphaRefl : (a : Ty ctx1) -> (0 b : Ty ctx2) -> a ~=~ b -> Alpha a b
allAlphaRefl : (as : Context (Ty ctx1)) -> (bs : Context (Ty ctx2)) -> as ~=~ bs -> AllAlpha as bs
alphaRefl (TVar i) .(TVar i) Refl = TVar Refl
alphaRefl (TArrow a b) .(TArrow a b) Refl = TArrow (alphaRefl a a Refl) (alphaRefl b b Refl)
alphaRefl (TProd (MkRow as fresh)) .(TProd (MkRow as fresh)) Refl = TProd (allAlphaRefl as as Refl)
alphaRefl (TSum (MkRow as fresh)) .(TSum (MkRow as fresh)) Refl = TSum (allAlphaRefl as as Refl)
alphaRefl (TFix x a) .(TFix x a) Refl = TFix (alphaRefl a a Refl)
allAlphaRefl [<] .([<]) Refl = Base
allAlphaRefl (as :< (l :- a)) .(as :< (l :- a)) Refl =
Step Here (alphaRefl a a Refl) (allAlphaRefl as as Refl)
namespace Sym
data AllAlpha' : Context (Ty ctx1) -> Context (Ty ctx2) -> Type where
Base : AllAlpha' [<] [<]
Step :
{0 as : Context (Ty ctx1)} -> {0 bs : Context (Ty ctx2)} ->
(i : Elem (l :- a) as) -> (j : Elem (l :- b) bs) ->
Alpha a b ->
AllAlpha' (dropElem as i) (dropElem bs j) ->
AllAlpha' as bs
%name AllAlpha' prfs
pinch :
(i : Elem x sx) -> (j : Elem y (dropElem sx i)) ->
Elem x (dropElem sx (indexPos (dropPos i) j))
pinch Here j = Here
pinch (There i) Here = i
pinch (There i) (There j) = There (pinch i j)
dropPinch :
(i : Elem x sx) -> (j : Elem y (dropElem sx i)) ->
dropElem (dropElem sx i) j = dropElem (dropElem sx $ indexPos (dropPos i) j) (pinch i j)
dropPinch Here j = Refl
dropPinch (There i) Here = Refl
dropPinch {sx = _ :< y} (There i) (There j) = cong (:< y) $ dropPinch i j
toStep :
AllAlpha' (as :< (l :- a)) bs ->
Exists (\b => (i : Elem (l :- b) bs ** (Alpha a b, AllAlpha' as (dropElem bs i))))
toStep (Step Here j prf prfs) = Evidence _ (j ** (prf, prfs))
toStep (Step {b = b'} (There i) j prf prfs) =
let Evidence b (k ** (prf', prfs)) = toStep prfs in
Evidence b
(indexPos (dropPos j) k **
(prf', Step i (pinch j k) prf (rewrite sym $ dropPinch j k in prfs)))
elemIsSnoc : Elem x sx -> NonEmpty sx
elemIsSnoc Here = IsSnoc
elemIsSnoc (There _) = IsSnoc
toAll : AllAlpha' as bs -> AllAlpha as bs
toAll Base = Base
toAll (Step i j prf prfs) with (elemIsSnoc i)
toAll {as = as :< (l :- a)} (Step i j prf prfs) | IsSnoc =
let Evidence b (k ** (prf, prfs)) = toStep (Step i j prf prfs) in
Step k prf (toAll prfs)
export
alphaSym : Alpha a b -> Alpha b a
allAlphaSym : AllAlpha as bs -> AllAlpha' bs as
alphaSym (TVar prf) = TVar (sym prf)
alphaSym (TArrow prf1 prf2) = TArrow (alphaSym prf1) (alphaSym prf2)
alphaSym (TProd prfs) = TProd (toAll $ allAlphaSym prfs)
alphaSym (TSum prfs) = TSum (toAll $ allAlphaSym prfs)
alphaSym (TFix prf) = TFix (alphaSym prf)
allAlphaSym Base = Base
allAlphaSym (Step i prf prfs) = Step i Here (alphaSym prf) (allAlphaSym prfs)
export
alphaSplit :
{0 a : Ty ctx1} -> {0 b : Ty ctx2} ->
Alpha a b -> NotAlpha a b -> Void
export
allAlphaSplit :
{0 as : Context (Ty ctx1)} -> {0 bs : Context (Ty ctx2)} ->
(0 fresh : AllFresh bs.names) ->
AllAlpha as bs -> AnyNotAlpha as bs -> Void
alphaSplit prf (Shape contra) = contra (alphaShape prf)
alphaSplit (TVar prf) (TVar contra) = contra prf
alphaSplit (TArrow prf1 prf2) (TArrow contras) =
these (alphaSplit prf1) (alphaSplit prf2) (const $ alphaSplit prf2) contras
alphaSplit (TProd {bs} prfs) (TProd contras) = allAlphaSplit bs.fresh prfs contras
alphaSplit (TSum {bs} prfs) (TSum contras) = allAlphaSplit bs.fresh prfs contras
alphaSplit (TFix prf) (TFix contra) = alphaSplit prf contra
allAlphaSplit fresh (Step i prf prfs) (Step1 contra) = void $ contra _ i
allAlphaSplit fresh (Step {as, n} i prf prfs) (Step2 j contras) =
let 0 eq = lookupUnique (MkRow bs fresh) i j in
these
(\contra => alphaSplit prf $ rewrite cong fst eq in contra)
(\contras =>
allAlphaSplit (dropElemFresh bs fresh i) prfs $
replace {p = \bi => AnyNotAlpha as (dropElem bs {x = n :- fst bi} $ snd bi)}
(sym eq)
contras)
(\contra, _ => alphaSplit prf $ rewrite cong fst eq in contra)
contras
export
alpha : (a : Ty ctx1) -> (b : Ty ctx2) -> LazyEither (Alpha a b) (NotAlpha a b)
export
allAlpha :
(as : Context (Ty ctx1)) -> (bs : Context (Ty ctx2)) ->
LazyEither (AllAlpha as bs) (AnyNotAlpha as bs)
alpha (TVar i) (TVar j) = map TVar TVar $ decEq (elemToNat i.pos) (elemToNat j.pos)
alpha (TVar i) (TArrow a b) = False `Because` Shape absurd
alpha (TVar i) (TProd as) = False `Because` Shape absurd
alpha (TVar i) (TSum as) = False `Because` Shape absurd
alpha (TVar i) (TFix x a) = False `Because` Shape absurd
alpha (TArrow a c) (TVar i) = False `Because` Shape absurd
alpha (TArrow a c) (TArrow b d) = map (uncurry TArrow) TArrow $ all (alpha a b) (alpha c d)
alpha (TArrow a c) (TProd as) = False `Because` Shape absurd
alpha (TArrow a c) (TSum as) = False `Because` Shape absurd
alpha (TArrow a c) (TFix x b) = False `Because` Shape absurd
alpha (TProd as) (TVar i) = False `Because` Shape absurd
alpha (TProd as) (TArrow a b) = False `Because` Shape absurd
alpha (TProd (MkRow as _)) (TProd bs) = map TProd TProd $ allAlpha as bs.context
alpha (TProd as) (TSum bs) = False `Because` Shape absurd
alpha (TProd as) (TFix x a) = False `Because` Shape absurd
alpha (TSum as) (TVar i) = False `Because` Shape absurd
alpha (TSum as) (TArrow a b) = False `Because` Shape absurd
alpha (TSum as) (TProd bs) = False `Because` Shape absurd
alpha (TSum (MkRow as _)) (TSum bs) = map TSum TSum $ allAlpha as bs.context
alpha (TSum as) (TFix x a) = False `Because` Shape absurd
alpha (TFix x a) (TVar i) = False `Because` Shape absurd
alpha (TFix x a) (TArrow b c) = False `Because` Shape absurd
alpha (TFix x a) (TProd as) = False `Because` Shape absurd
alpha (TFix x a) (TSum as) = False `Because` Shape absurd
alpha (TFix x a) (TFix y b) = map TFix TFix $ alpha a b
allAlpha [<] [<] = True `Because` Base
allAlpha [<] (bs :< nb) = False `Because` Base
allAlpha (as :< (n :- a)) bs =
map
(\((b ** i) ** (prf1, prf2)) => Step i prf1 prf2)
(either Step1 false) $
(bi := (decLookup n bs).forget) >=>
all (alpha a $ fst bi) (allAlpha as (dropElem bs $ snd bi))
where
p : (b ** Elem (n :- b) bs) -> Type
p bi = (Alpha a (fst bi), AllAlpha as (dropElem bs $ snd bi))
q : (b ** Elem (n :- b) bs) -> Type
q bi = These (NotAlpha a (fst bi)) (AnyNotAlpha as (dropElem bs $ snd bi))
false : (bi ** q bi) -> AnyNotAlpha (as :< (n :- a)) bs
false ((b ** i) ** contras) = Step2 i contras
-- Occurs ----------------------------------------------------------------------
namespace Strengthen
public export
data Strengthen : (i : Var ctx) -> Ty ctx -> Ty (dropElem ctx i.pos) -> Type
public export
data StrengthenAll :
(i : Var ctx) -> (as : Context (Ty ctx)) ->
All (const $ Ty $ dropElem ctx i.pos) as.names -> Type
data Strengthen where
TVar : (j = index (dropPos i.pos) k) -> Strengthen i (TVar j) (TVar k)
TArrow : Strengthen i a c -> Strengthen i b d -> Strengthen i (TArrow a b) (TArrow c d)
TProd : StrengthenAll i as.context bs -> Strengthen i (TProd as) (TProd $ fromAll as bs)
TSum : StrengthenAll i as.context bs -> Strengthen i (TSum as) (TSum $ fromAll as bs)
TFix : Strengthen (ThereVar i) a b -> Strengthen i (TFix x a) (TFix x b)
data StrengthenAll where
Lin : StrengthenAll i [<] [<]
(:<) : StrengthenAll i as bs -> Strengthen i a b -> StrengthenAll i (as :< (l :- a)) (bs :< b)
%name Strengthen prf
%name StrengthenAll prfs
strengthenEq : Strengthen i a b -> a = thin (dropPos i.pos) b
strengthenAllEq : StrengthenAll i as bs -> as = thinAll (dropPos i.pos) (fromAll as bs)
strengthenEq (TVar prf) = cong TVar prf
strengthenEq (TArrow prf1 prf2) = cong2 TArrow (strengthenEq prf1) (strengthenEq prf2)
strengthenEq (TProd {as = MkRow _ _} prfs) = cong TProd $ rowCong $ strengthenAllEq prfs
strengthenEq (TSum {as = MkRow _ _} prfs) = cong TSum $ rowCong $ strengthenAllEq prfs
strengthenEq (TFix prf) = cong (TFix _) $ strengthenEq prf
strengthenAllEq [<] = Refl
strengthenAllEq ((:<) {l} prfs prf) =
cong2 (:<) (strengthenAllEq prfs) (cong (l :-) $ strengthenEq prf)
namespace Occurs
public export
data OccursIn : Var ctx -> Ty ctx -> Type
public export
data OccursInAny : Var ctx -> Context (Ty ctx) -> Type
data OccursIn where
TVar : i = j -> i `OccursIn` TVar j
TArrow : These (i `OccursIn` a) (i `OccursIn` b) -> i `OccursIn` TArrow a b
TProd : i `OccursInAny` as.context -> i `OccursIn` TProd as
TSum : i `OccursInAny` as.context -> i `OccursIn` TSum as
TFix : ThereVar i `OccursIn` a -> i `OccursIn` TFix x a
data OccursInAny where
And : These (i `OccursInAny` as) (i `OccursIn` a) -> i `OccursInAny` (as :< (n :- a))
%name OccursIn contra
%name OccursInAny contras
export
Uninhabited (i `OccursInAny` [<]) where
uninhabited (And contras) impossible
export
strengthenSplit : Strengthen i a b -> i `OccursIn` a -> Void
strengthenAllSplit : StrengthenAll i as bs -> i `OccursInAny` as -> Void
strengthenSplit (TVar Refl) (TVar {i = %% n} contra) = void $ lemma _ _ contra
where
lemma :
(i : Elem x sx) -> (j : Elem y (dropElem sx i)) ->
Not (toVar i = toVar (indexPos (dropPos i) j))
lemma Here j prf = absurd (toVarInjective prf)
lemma (There i) Here prf = absurd (toVarInjective prf)
lemma (There i) (There j) prf = lemma i j $ toVarCong $ thereInjective $ toVarInjective prf
strengthenSplit (TArrow prf1 prf2) (TArrow contras) =
these (strengthenSplit prf1) (strengthenSplit prf2) (const $ strengthenSplit prf2) contras
strengthenSplit (TProd prfs) (TProd contras) = strengthenAllSplit prfs contras
strengthenSplit (TSum prfs) (TSum contras) = strengthenAllSplit prfs contras
strengthenSplit (TFix prf) (TFix contra) = strengthenSplit prf contra
strengthenAllSplit (prfs :< prf) (And contras) =
these (strengthenAllSplit prfs) (strengthenSplit prf) (const $ strengthenSplit prf) contras
export
strengthen :
(i : Var ctx) -> (a : Ty ctx) ->
Proof (Ty (dropElem ctx i.pos)) (Strengthen i a) (i `OccursIn` a)
export
strengthenAll :
(i : Var ctx) -> (as : Context (Ty ctx)) ->
Proof (All (const $ Ty $ dropElem ctx i.pos) as.names) (StrengthenAll i as) (i `OccursInAny` as)
strengthen ((%%) x {pos = i}) (TVar ((%%) y {pos = j})) =
map (TVar . toVar)
(\_, prf => TVar $ toVarCong prf)
(TVar . toVarCong . skipsDropPos i) $
strengthen (dropPos i) j
strengthen i (TArrow a b) =
map (uncurry TArrow) (\(c, d) => uncurry TArrow) TArrow $
all (strengthen i a) (strengthen i b)
strengthen i (TProd (MkRow as fresh)) =
map (TProd . fromAll (MkRow as fresh)) (\_ => TProd) TProd $
strengthenAll i as
strengthen i (TSum (MkRow as fresh)) =
map (TSum . fromAll (MkRow as fresh)) (\_ => TSum) TSum $
strengthenAll i as
strengthen i (TFix x a) =
map (TFix x) (\_ => TFix) TFix $
strengthen (ThereVar i) a
strengthenAll i [<] = Just [<] `Because` [<]
strengthenAll i (as :< (l :- a)) =
map (uncurry (:<) . swap) (\(_, _) => uncurry (:<) . swap) (And . swap) $
all (strengthen i a) (strengthenAll i as)
-- Not Strictly Positive -----------------------------------------------------------
namespace StrictlyPositive
public export
data StrictlyPositiveIn : Var ctx -> Ty ctx -> Type
public export
data StrictlyPositiveInAll : Var ctx -> Context (Ty ctx) -> Type
data StrictlyPositiveIn where
TVar : i `StrictlyPositiveIn` TVar j
TArrow : Strengthen i (TArrow a b) c -> i `StrictlyPositiveIn` TArrow a b
TProd : i `StrictlyPositiveInAll` as.context -> i `StrictlyPositiveIn` TProd as
TSum : i `StrictlyPositiveInAll` as.context -> i `StrictlyPositiveIn` TSum as
TFix : ThereVar i `StrictlyPositiveIn` a -> i `StrictlyPositiveIn` TFix x a
data StrictlyPositiveInAll where
Lin : i `StrictlyPositiveInAll` [<]
(:<) :
i `StrictlyPositiveInAll` as -> i `StrictlyPositiveIn` a ->
i `StrictlyPositiveInAll` (as :< (l :- a))
%name StrictlyPositiveIn prf
%name StrictlyPositiveInAll prfs
namespace NotPositive
public export
data NotPositiveIn : Var ctx -> Ty ctx -> Type
public export
data NotPositiveInAny : Var ctx -> Context (Ty ctx) -> Type
data NotPositiveIn where
TArrow : i `OccursIn` TArrow a b -> i `NotPositiveIn` TArrow a b
TProd : i `NotPositiveInAny` as.context -> i `NotPositiveIn` TProd as
TSum : i `NotPositiveInAny` as.context -> i `NotPositiveIn` TSum as
TFix : ThereVar i `NotPositiveIn` a -> i `NotPositiveIn` TFix x a
data NotPositiveInAny where
And :
These (i `NotPositiveInAny` as) (i `NotPositiveIn` a) ->
i `NotPositiveInAny` (as :< (n :- a))
%name NotPositiveIn contra
%name NotPositiveInAny contras
export
Uninhabited (i `NotPositiveIn` TVar j) where
uninhabited (TArrow contra) impossible
export
Uninhabited (i `NotPositiveInAny` [<]) where
uninhabited (And contras) impossible
export
strictlyPositiveSplit : i `StrictlyPositiveIn` a -> i `NotPositiveIn` a -> Void
strictlyPositiveAllSplit : i `StrictlyPositiveInAll` as -> i `NotPositiveInAny` as -> Void
strictlyPositiveSplit (TArrow prf) (TArrow contra) = strengthenSplit prf contra
strictlyPositiveSplit (TProd prfs) (TProd contras) = strictlyPositiveAllSplit prfs contras
strictlyPositiveSplit (TSum prfs) (TSum contras) = strictlyPositiveAllSplit prfs contras
strictlyPositiveSplit (TFix prf) (TFix contra) = strictlyPositiveSplit prf contra
strictlyPositiveAllSplit (prfs :< prf) (And contras) =
these
(strictlyPositiveAllSplit prfs)
(strictlyPositiveSplit prf)
(const $ strictlyPositiveSplit prf)
contras
export
strictlyPositiveIn :
(i : Var ctx) -> (a : Ty ctx) ->
LazyEither (i `StrictlyPositiveIn` a) (i `NotPositiveIn` a)
strictlyPositiveInAll :
(i : Var ctx) -> (as : Context (Ty ctx)) ->
LazyEither (i `StrictlyPositiveInAll` as) (i `NotPositiveInAny` as)
i `strictlyPositiveIn` TVar j = True `Because` TVar
i `strictlyPositiveIn` TArrow a b =
map (\(_ ** prf) => TArrow prf) TArrow $
(strengthen i $ TArrow a b).forget
i `strictlyPositiveIn` TProd (MkRow as _) = map TProd TProd $ i `strictlyPositiveInAll` as
i `strictlyPositiveIn` TSum (MkRow as _) = map TSum TSum $ i `strictlyPositiveInAll` as
i `strictlyPositiveIn` TFix x a = map TFix TFix $ ThereVar i `strictlyPositiveIn` a
i `strictlyPositiveInAll` [<] = True `Because` [<]
i `strictlyPositiveInAll` (as :< (n :- a)) =
map (uncurry (:<) . swap) (And . swap) $
all (i `strictlyPositiveIn` a) (i `strictlyPositiveInAll` as)
-- Well Formed -----------------------------------------------------------------
-- Negating decidable properties is fun.
namespace WellFormed
public export
data WellFormed : Ty ctx -> Type
public export
data AllWellFormed : Context (Ty ctx) -> Type
data WellFormed where
TVar : WellFormed (TVar i)
TArrow : WellFormed a -> WellFormed b -> WellFormed (TArrow a b)
TProd : AllWellFormed as.context -> WellFormed (TProd as)
TSum : AllWellFormed as.context -> WellFormed (TSum as)
TFix : toVar Here `StrictlyPositiveIn` a -> WellFormed a -> WellFormed (TFix x a)
data AllWellFormed where
Lin : AllWellFormed [<]
(:<) : AllWellFormed as -> WellFormed a -> AllWellFormed (as :< (n :- a))
%name WellFormed wf
%name AllWellFormed wfs
namespace IllFormed
public export
data IllFormed : Ty ctx -> Type
public export
data AnyIllFormed : Context (Ty ctx) -> Type
data IllFormed where
TArrow : These (IllFormed a) (IllFormed b) -> IllFormed (TArrow a b)
TProd : AnyIllFormed as.context -> IllFormed (TProd as)
TSum : AnyIllFormed as.context -> IllFormed (TSum as)
TFix : These (toVar Here `NotPositiveIn` a) (IllFormed a) -> IllFormed (TFix x a)
data AnyIllFormed where
And : These (AnyIllFormed as) (IllFormed a) -> AnyIllFormed (as :< (n :- a))
%name IllFormed bad
%name AnyIllFormed bads
export
Uninhabited (IllFormed (TVar i)) where
uninhabited (TArrow prf) impossible
export
Uninhabited (AnyIllFormed [<]) where
uninhabited (And prf) impossible
export
wellFormedSplit : WellFormed a -> IllFormed a -> Void
allWellFormedSplit : AllWellFormed as -> AnyIllFormed as -> Void
wellFormedSplit (TArrow wf1 wf2) (TArrow bads) =
these (wellFormedSplit wf1) (wellFormedSplit wf2) (const $ wellFormedSplit wf2) bads
wellFormedSplit (TProd wfs) (TProd bads) = allWellFormedSplit wfs bads
wellFormedSplit (TSum wfs) (TSum bads) = allWellFormedSplit wfs bads
wellFormedSplit (TFix prf wf) (TFix bads) =
these (strictlyPositiveSplit prf) (wellFormedSplit wf) (const $ wellFormedSplit wf) bads
allWellFormedSplit (wfs :< wf) (And bads) =
these (allWellFormedSplit wfs) (wellFormedSplit wf) (const $ wellFormedSplit wf) bads
export
wellFormed : (a : Ty ctx) -> LazyEither (WellFormed a) (IllFormed a)
export
allWellFormed : (as : Context (Ty ctx)) -> LazyEither (AllWellFormed as) (AnyIllFormed as)
wellFormed (TVar j) = True `Because` TVar
wellFormed (TArrow a b) = map (uncurry TArrow) TArrow $ all (wellFormed a) (wellFormed b)
wellFormed (TProd (MkRow as _)) = map TProd TProd $ allWellFormed as
wellFormed (TSum (MkRow as _)) = map TSum TSum $ allWellFormed as
wellFormed (TFix x a) = map (uncurry TFix) TFix $ all (%% x `strictlyPositiveIn` a) (wellFormed a)
allWellFormed [<] = True `Because` [<]
allWellFormed (as :< (n :- a)) =
map (uncurry (:<) . swap) (And . swap) $
all (wellFormed a) (allWellFormed as)
--------------------------------------------------------------------------------
-- Substitution ----------------------------------------------------------------
--------------------------------------------------------------------------------
public export
sub : All (const $ Thinned Ty ctx2) ctx1 -> Ty ctx1 -> Ty ctx2
public export
subAll : All (const $ Thinned Ty ctx2) ctx1 -> Context (Ty ctx1) -> Context (Ty ctx2)
public export
subAllNames :
(f : All (const $ Thinned Ty ctx2) ctx1) ->
(ctx : Context (Ty ctx1)) ->
(subAll f ctx).names = ctx.names
sub env (TVar i) = (indexAll i.pos env).extract
sub env (TArrow a b) = TArrow (sub env a) (sub env b)
sub env (TProd (MkRow as fresh)) = TProd (MkRow (subAll env as) (rewrite subAllNames env as in fresh))
sub env (TSum (MkRow as fresh)) = TSum (MkRow (subAll env as) (rewrite subAllNames env as in fresh))
sub env (TFix x a) = TFix x (sub (mapProperty (rename (Drop Id)) env :< (TVar (%% x) `Over` Id)) a)
subAll env [<] = [<]
subAll env (as :< (n :- a)) = subAll env as :< (n :- sub env a)
subAllNames env [<] = Refl
subAllNames env (as :< (n :- a)) = cong (:< n) (subAllNames env as)
-- Special Types ---------------------------------------------------------------
public export
TNat : Ty ctx
TNat = TFix "Nat" (TSum [<"Z" :- TProd [<], "S" :- TVar (%% "Nat")])
public export
TList : Ty ctx -> Ty ctx
TList a =
TFix "List" (TSum
[<"N" :- TProd [<]
, "C" :- TProd [<"H" :- thin (Drop Id) a, "T" :- TVar (%% "List")]])
-- Testing if we have a list
-- TODO: prove correct
isList : (a : Ty ctx) -> Maybe (Ty ctx)
isList (TFix x (TSum (MkRow
[<"N" :- TProd (MkRow [<] _)
, "C" :- TProd (MkRow [<"H" :- a, "T" :- TVar ((%%) x {pos = Here})] _)] _))) =
does (strengthen (%% x) a)
isList (TFix x (TSum (MkRow
[<"N" :- TProd (MkRow [<] _)
, "C" :- TProd (MkRow [<"T" :- TVar ((%%) x {pos = Here}), "H" :- a] _)] _))) =
does (strengthen (%% x) a)
isList (TFix x (TSum (MkRow
[<"C" :- TProd (MkRow [<"H" :- a, "T" :- TVar ((%%) x {pos = Here})] _)
, "N" :- TProd (MkRow [<] _)] _))) =
does (strengthen (%% x) a)
isList (TFix x (TSum (MkRow
[<"C" :- TProd (MkRow [<"T" :- TVar ((%%) x {pos = Here}), "H" :- a] _)
, "N" :- TProd (MkRow [<] _)] _))) =
does (strengthen (%% x) a)
isList _ = Nothing
|