diff options
Diffstat (limited to 'src/Data/Term/Unify.idr')
-rw-r--r-- | src/Data/Term/Unify.idr | 249 |
1 files changed, 249 insertions, 0 deletions
diff --git a/src/Data/Term/Unify.idr b/src/Data/Term/Unify.idr new file mode 100644 index 0000000..2955aa2 --- /dev/null +++ b/src/Data/Term/Unify.idr @@ -0,0 +1,249 @@ +module Data.Term.Unify + +import Data.DPair +import Data.Fin.Occurs +import Data.Maybe.Properties +import Data.Term +import Data.Term.Zipper + +import Decidable.Equality + +import Syntax.PreorderReasoning + +-- Check ----------------------------------------------------------------------- + +export +check : Fin k -> Term sig k -> Maybe (Term sig (pred k)) +checkAll : Fin k -> Vect n (Term sig k) -> Maybe (Vect n (Term sig (pred k))) + +check x (Var y) = Var <$> thick x y +check x (Op op ts) = Op op <$> checkAll x ts + +checkAll x [] = Just [] +checkAll x (t :: ts) = [| check x t :: checkAll x ts |] + +-- Properties + +export +checkOccurs : (x : Fin k) -> (zip : Zipper sig k) -> IsNothing (check x (zip + Var x)) +checkAllOccurs : + (x : Fin k) -> + (i : Fin (S n)) -> + (ts : Vect n (Term sig k)) -> + (zip : Zipper sig k) -> + IsNothing (checkAll x (insertAt i (zip + Var x) ts)) + +checkOccurs x Top = mapNothing Var (thickRefl x) +checkOccurs x (Op op i ts zip) = mapNothing (Op op) (checkAllOccurs x i ts zip) + +checkAllOccurs x FZ ts zip = + appLeftNothingIsNothing + (appRightNothingIsNothing (Just (::)) (checkOccurs x zip)) + (checkAll x ts) +checkAllOccurs x (FS i) (t :: ts) zip = + appRightNothingIsNothing + (Just (::) <*> check x t) + (checkAllOccurs x i ts zip) + +export +checkNothing : + (x : Fin k) -> + (t : Term sig k) -> + (0 _ : IsNothing (check x t)) -> + (zip : Zipper sig k ** t = zip + Var x) +checkAllNothing : + (x : Fin k) -> + (t : Term sig k) -> + (ts : Vect n (Term sig k)) -> + (0 _ : IsNothing (checkAll x (t :: ts))) -> + (i ** ts' ** zip : Zipper sig k ** t :: ts = insertAt i (zip + Var x) ts') + +checkNothing x (Var y) prf = + (Top ** sym (cong Var (thickNothing x y (mapNothingInverse Var (thick x y) prf)))) +checkNothing x (Op op (t :: ts)) prf = + let (i ** ts' ** zip ** prf) = checkAllNothing x t ts (mapNothingInverse (Op op) _ prf) in + (Op op i ts' zip ** cong (Op op) prf) + +checkAllNothing x t ts prf with (appNothingInverse (Just (::) <*> check x t) (checkAll x ts) prf) + _ | Left prf' = case appNothingInverse (Just (::)) (check x t) prf' of + Right prf => + let (zip ** prf) = checkNothing x t prf in + (FZ ** ts ** zip ** cong (:: ts) prf) + checkAllNothing x t (t' :: ts) prf | Right prf' = + let (i ** ts ** zip ** prf) = checkAllNothing x t' ts prf' in + (FS i ** t :: ts ** zip ** cong (t ::) prf) + +export +checkThin : (x : Fin k) -> (t : Term sig (pred k)) -> IsJust (check x (pure (thin x) <$> t)) +checkAllThin : + (x : Fin k) -> + (ts : Vect n (Term sig (pred k))) -> + IsJust (checkAll x (map (pure (thin x) <$>) ts)) + +checkThin x (Var y) = mapIsJust Var (thickNeq x (thin x y) (\prf => thinSkips x y $ sym prf)) +checkThin x (Op op ts) = mapIsJust (Op op) (checkAllThin x ts) + +checkAllThin x [] = ItIsJust +checkAllThin x (t :: ts) = + appIsJust + (appIsJust ItIsJust (checkThin x t)) + (checkAllThin x ts) + +export +checkJust : + (x : Fin k) -> + (t : Term sig k) -> + (0 _ : check x t = Just u) -> + t = pure (thin x) <$> u +checkAllJust : + (x : Fin k) -> + (ts : Vect n (Term sig k)) -> + (0 _ : checkAll x ts = Just us) -> + ts = map (pure (thin x) <$>) us + +checkJust x (Var y) prf = + let 0 z = mapJustInverse Var (thick x y) prf in + let 0 prf = thickJust x y (fst z.snd) in + sym $ Calc $ + |~ pure (thin x) <$> u + ~~ pure (thin x) <$> Var z.fst ...(cong (pure (thin x) <$>) $ snd z.snd) + ~~ Var y ...(cong Var prf) +checkJust x (Op op ts) prf = + let 0 z = mapJustInverse (Op op) (checkAll x ts) prf in + let 0 prf = checkAllJust x ts (fst z.snd) in + Calc $ + |~ Op op ts + ~~ pure (thin x) <$> Op op z.fst ...(cong (Op op) prf) + ~~ pure (thin x) <$> u ...(sym $ cong (pure (thin x) <$>) $ snd z.snd) + +checkAllJust x [] Refl = Refl +checkAllJust x (t :: ts) prf = + let 0 z = appJustInverse (Just (::) <*> check x t) (checkAll x ts) prf in + let 0 w = appJustInverse (Just (::)) (check x t) (fst z.snd.snd) in + Calc $ + |~ t :: ts + ~~ map (pure (thin x) <$>) (w.snd.fst :: z.snd.fst) ...(cong2 (::) (checkJust x t (fst $ snd w.snd.snd)) (checkAllJust x ts (fst $ snd z.snd.snd))) + ~~ map (pure (thin x) <$>) (w.fst w.snd.fst z.snd.fst) ...(cong (\f => map (pure (thin x) <$>) (f w.snd.fst z.snd.fst)) $ injective $ fst w.snd.snd) + ~~ map (pure (thin x) <$>) (z.fst z.snd.fst) ...(sym $ cong (\f => map (pure (thin x) <$>) (f z.snd.fst)) $ snd $ snd w.snd.snd) + ~~ map (pure (thin x) <$>) us ...(sym $ cong (map (pure (thin x) <$>)) $ snd $ snd z.snd.snd) + +-- Single Variable Substitution ------------------------------------------------ + +export +for : Term sig (pred k) -> Fin k -> Fin k -> Term sig (pred k) +(t `for` x) y = maybe t Var (thick x y) + +export +forThin : (0 t : Term sig (pred k)) -> (x : Fin k) -> (t `for` x) . thin x .=. Var +forThin t x i = cong (maybe t Var) (thickThin x i) + +export +forUnifies : + (x : Fin k) -> + (t : Term sig k) -> + (0 _ : check x t = Just u) -> + (u `for` x) <$> t = (u `for` x) <$> Var x +forUnifies x t prf = Calc $ + |~ (u `for` x) <$> t + ~~ (u `for` x) <$> pure (thin x) <$> u ...(cong ((u `for` x) <$>) $ checkJust x t prf) + ~~ (u `for` x) . thin x <$> u ...(sym $ subAssoc (u `for` x) (pure (thin x)) u) + ~~ Var <$> u ...(subCong (forThin u x) u) + ~~ u ...(subUnit u) + ~~ (u `for` x) <$> Var x ...(sym $ cong (maybe u Var) $ extractIsNothing $ thickRefl x) + +-- Substitution List ----------------------------------------------------------- + +public export +data AList : Signature -> Nat -> Nat -> Type where + Lin : AList sig n n + (:<) : AList sig k n -> (Term sig k, Fin (S k)) -> AList sig (S k) n + +%name AList sub + +namespace Exists + public export + (:<) : Exists (AList sig n) -> (Term sig n, Fin (S n)) -> Exists (AList sig (S n)) + Evidence _ sub :< tx = Evidence _ (sub :< tx) + +export +eval : AList sig k n -> Fin k -> Term sig n +eval [<] = Var +eval (sub :< (t, x)) = eval sub . (t `for` x) + +export +(++) : AList sig k n -> AList sig j k -> AList sig j n +sub ++ [<] = sub +sub ++ sub1 :< tx = (sub ++ sub1) :< tx + +-- Properties + +export +evalHomo : + (0 sub2 : AList sig k n) -> + (sub1 : AList sig j k) -> + eval (sub2 ++ sub1) .=. eval sub2 . eval sub1 +evalHomo sub2 [<] i = Refl +evalHomo sub2 (sub1 :< (t, x)) i = Calc $ + |~ eval (sub2 ++ sub1) <$> (t `for` x) i + ~~ (eval sub2 . eval sub1) <$> (t `for` x) i ...(subCong (evalHomo sub2 sub1) ((t `for` x) i)) + ~~ eval sub2 <$> eval sub1 <$> (t `for` x) i ...(subAssoc (eval sub2) (eval sub1) ((t `for` x) i)) + +-- Unification ----------------------------------------------------------------- + +flexFlex : (x, y : Fin n) -> Exists (AList sig n) +flexFlex x y = + rewrite (snd $ indexIsSuc x) in + case thick x' y' of + Just z => Evidence _ [<(Var z, x')] + Nothing => Evidence _ [<] + where + x', y' : Fin (S $ fst $ indexIsSuc x) + x' = replace {p = Fin} (snd $ indexIsSuc x) x + y' = replace {p = Fin} (snd $ indexIsSuc x) y + +flexRigid : Fin n -> Term sig n -> Maybe (Exists (AList sig n)) +flexRigid x t = + rewrite (snd $ indexIsSuc x) in + case check x' t' of + Just u => Just (Evidence _ [<(u, x')]) + Nothing => Nothing + where + x' : Fin (S $ fst $ indexIsSuc x) + x' = replace {p = Fin} (snd $ indexIsSuc x) x + t' : Term sig (S $ fst $ indexIsSuc x) + t' = replace {p = Term sig} (snd $ indexIsSuc x) t + +export +amgu : + DecEq (Exists sig.Operator) => + (t, u : Term sig n) -> + Exists (AList sig n) -> + Maybe (Exists (AList sig n)) +amguAll : + DecEq (Exists sig.Operator) => + (ts, us : Vect k (Term sig n)) -> + Exists (AList sig n) -> + Maybe (Exists (AList sig n)) + +amgu (Op op ts) (Op op' us) acc = + case decEq {t = Exists sig.Operator} (Evidence _ op) (Evidence _ op') of + Yes prf => amguAll ts (replace {p = \k => Vect k (Term sig n)} (sym $ cong fst prf) us) acc + No neq => Nothing +amgu (Var x) (Var y) (Evidence _ [<]) = Just (flexFlex x y) +amgu (Var x) (Op op' us) (Evidence _ [<]) = flexRigid x (Op op' us) +amgu (Op op ts) (Var y) (Evidence _ [<]) = flexRigid y (Op op ts) +amgu t@(Var _) u@(Var _) (Evidence _ (sub :< (v, z))) = + (:< (v, z)) <$> amgu ((v `for` z) <$> t) ((v `for` z) <$> u) (Evidence _ sub) +amgu t@(Var _) u@(Op _ _) (Evidence _ (sub :< (v, z))) = + (:< (v, z)) <$> amgu ((v `for` z) <$> t) ((v `for` z) <$> u) (Evidence _ sub) +amgu t@(Op _ _) u@(Var _) (Evidence _ (sub :< (v, z))) = + (:< (v, z)) <$> amgu ((v `for` z) <$> t) ((v `for` z) <$> u) (Evidence _ sub) + +amguAll [] [] acc = Just acc +amguAll (t :: ts) (u :: us) acc = do + acc <- amgu t u acc + amguAll ts us acc + +export +mgu : DecEq (Exists sig.Operator) => (t, u : Term sig n) -> Maybe (Exists (AList sig n)) +mgu t u = amgu t u (Evidence _ [<]) |