1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
module Data.Term.Property
import Data.Term
import Data.Vect.Properties.Index
import Data.Vect.Quantifiers
import Data.Vect.Quantifiers.Extra
import Syntax.PreorderReasoning
%prefix_record_projections off
-- Definition ------------------------------------------------------------------
public export
record Property (sig : Signature) (k : Nat) where
constructor MkProp
0 Prop : forall n. (SFin k -> Term sig n) -> Type
cong : forall n. {f, g : SFin k -> Term sig n} -> f .=. g -> Prop f -> Prop g
%name Property p, q
-- Instances -------------------------------------------------------------------
public export
Unifies : Term sig k -> Term sig k -> Property sig k
Unifies t u = MkProp
{ Prop = \f => f <$> t = f <$> u
, cong = \cong, prf => Calc $
|~ _ <$> t
~~ _ <$> t ..<(subCong cong t)
~~ _ <$> u ...(prf)
~~ _ <$> u ...(subCong cong u)
}
public export
All : Vect n (Property sig k) -> Property sig k
All ps = MkProp (\f => All (\p => p.Prop f) ps) (\cong => mapRel (\p => p.cong cong))
-- Equivalence -----------------------------------------------------------------
public export 0
(<=>) : Property sig k -> Property sig k -> Type
p <=> q = forall n. (f : SFin k -> Term sig n) -> p.Prop f <=> q.Prop f
-- Properties
export
unifiesSym : Unifies t u <=> Unifies u t
unifiesSym f = MkEquivalence (\prf => sym prf) (\prf => sym prf)
export
unifiesOp :
{k : Nat} ->
{0 op : sig.Operator k} ->
{0 ts, us : Vect k (Term sig j)} ->
Unifies (Op op ts) (Op op us) <=> All (tabulate (\i => Unifies (index i ts) (index i us)))
unifiesOp f = MkEquivalence
{ leftToRight = \prf => tabulate (\i => Unifies (index i ts) (index i us)) (leftToRight prf)
, rightToLeft = \prf => irrelevantEq $ cong (Op op) $ rightToLeft prf
}
where
leftToRight :
(Unifies (Op op ts) (Op op us)).Prop f ->
(i : _) ->
f <$> index i ts = f <$> index i us
leftToRight prf i =
Calc $
|~ f <$> index i ts
~~ index i (map (f <$>) ts) ...(sym $ indexNaturality i (f <$>) ts)
~~ index i (map (f <$>) us) ...(cong (index i) $ opInjectiveTs' prf)
~~ f <$> index i us ...(indexNaturality i (f <$>) us)
rightToLeft :
{k : Nat} ->
{ts, us : Vect k (Term sig j)} ->
(All (tabulate (\i => Unifies (index i ts) (index i us)))).Prop f ->
map (f <$>) ts = map (f <$>) us
rightToLeft {ts = [], us = []} [] = Refl
rightToLeft {ts = t :: ts, us = u :: us} (prf :: prfs) = cong2 (::) prf (rightToLeft prfs)
-- Nothing ---------------------------------------------------------------------
public export 0
Nothing : Property sig k -> Type
Nothing p = forall n. (f : SFin k -> Term sig n) -> Not (p.Prop f)
-- Properties
export
nothingEquiv : p <=> q -> Nothing p -> Nothing q
nothingEquiv eq absurd f x = absurd f ((eq f).rightToLeft x)
-- Extensions ------------------------------------------------------------------
public export
Extension : Property sig k -> (SFin k -> Term sig n) -> Property sig n
Extension p f = MkProp
{ Prop = \g => p.Prop (g . f)
, cong = \prf => p.cong (\i => subCong prf (f i))
}
-- Properties
export
nothingExtends : Nothing p -> Nothing (Extension p f)
nothingExtends absurd g x = void $ absurd (g . f) x
export
extendUnit : (p : Property sig k) -> p <=> Extension p Var'
extendUnit p f = MkEquivalence id id
export
extendAssoc :
(p : Property sig j) ->
(f : SFin j -> Term sig k) ->
(g : SFin k -> Term sig m) ->
Extension (Extension p f) g <=> Extension p (g . f)
extendAssoc p f g h =
MkEquivalence
(p.cong (\i => subAssoc h g (f i)))
(p.cong (\i => sym $ subAssoc h g (f i)))
export
extendUnify :
(t, u : Term sig j) ->
(f : SFin j -> Term sig k) ->
(g : SFin k -> Term sig m) ->
Extension (Unifies t u) (g . f) <=> Extension (Unifies (f <$> t) (f <$> u)) g
extendUnify t u f g h =
MkEquivalence
(\prf => Calc $
|~ (h . g) <$> (f <$> t)
~~ ((h . g) . f) <$> t ...(sym $ subAssoc (h . g) f t)
~~ (h . (g . f)) <$> t ...(subCong (\i => subAssoc h g (f i)) t)
~~ (h . (g . f)) <$> u ...(prf)
~~ ((h . g) . f) <$> u ...(sym $ subCong (\i => subAssoc h g (f i)) u)
~~ (h . g) <$> (f <$> u) ...(subAssoc (h . g) f u))
(\prf => Calc $
|~ (h . (g . f)) <$> t
~~ ((h . g) . f) <$> t ...(sym $ subCong (\i => subAssoc h g (f i)) t)
~~ (h . g) <$> (f <$> t) ...(subAssoc (h . g) f t)
~~ (h . g) <$> (f <$> u) ...(prf)
~~ ((h . g) . f) <$> u ...(sym $ subAssoc (h . g) f u)
~~ (h . (g . f)) <$> u ...(subCong (\i => subAssoc h g (f i)) u))
-- Ordering --------------------------------------------------------------------
public export
record (<=) (f : SFin k -> Term sig m) (g : SFin k -> Term sig n) where
constructor MkLte
sub : SFin n -> Term sig m
prf : f .=. sub . g
%name Property.(<=) prf
-- Properties
export
lteCong : f .=. f' -> g .=. g' -> f <= g -> f' <= g'
lteCong prf1 prf2 prf3 = MkLte
{ sub = prf3.sub
, prf = \i => Calc $
|~ f' i
~~ f i ...(sym $ prf1 i)
~~ prf3.sub <$> g i ...(prf3.prf i)
~~ prf3.sub <$> g' i ...(cong (prf3.sub <$>) $ prf2 i)
}
export
Reflexive (SFin k -> Term sig m) (<=) where
reflexive = MkLte Var' (\i => sym $ subUnit _)
export
transitive : f <= g -> g <= h -> f <= h
transitive prf1 prf2 = MkLte
{ sub = prf1.sub . prf2.sub
, prf = \i => Calc $
|~ f i
~~ prf1.sub <$> g i ...(prf1.prf i)
~~ prf1.sub <$> prf2.sub <$> h i ...(cong (prf1.sub <$>) $ prf2.prf i)
~~ (prf1.sub . prf2.sub) <$> h i ...(sym $ subAssoc prf1.sub prf2.sub (h i))
}
export
varMax : (f : SFin k -> Term sig m) -> f <= Var'
varMax f = MkLte f (\i => Refl)
export
compLte : f <= g -> (h : SFin k -> Term sig m) -> f . h <= g . h
compLte prf h = MkLte
{ sub = prf.sub
, prf = \i => Calc $
|~ f <$> h i
~~ (prf.sub . g) <$> h i ...(subCong prf.prf (h i))
~~ prf.sub <$> g <$> h i ...(subAssoc prf.sub g (h i))
}
export
lteExtend :
{p : Property sig k} ->
{f : SFin k -> Term sig m} ->
{g : SFin k -> Term sig n} ->
(prf : f <= g) ->
p.Prop f ->
(Extension p g).Prop prf.sub
lteExtend prf x = p.cong prf.prf x
-- Maximal ---------------------------------------------------------------------
public export
Max : Property sig k -> Property sig k
Max p = MkProp
{ Prop = \f => (p.Prop f, forall n. (g : SFin k -> Term sig n) -> p.Prop g -> g <= f)
, cong = \cong, (x, max) => (p.cong cong x, \g, y => lteCong (\_ => Refl) cong (max g y))
}
export
maxCong : p <=> q -> Max p <=> Max q
maxCong prf f = MkEquivalence
{ leftToRight = \(x, max) => ((prf f).leftToRight x, \g, y => max g ((prf g).rightToLeft y))
, rightToLeft = \(x, max) => ((prf f).rightToLeft x, \g, y => max g ((prf g).leftToRight y))
}
-- Downward Closed -------------------------------------------------------------
public export 0
DClosed : Property sig k -> Type
DClosed p =
forall m, n.
(f : SFin k -> Term sig m) ->
(g : SFin k -> Term sig n) ->
f <= g ->
p.Prop g ->
p.Prop f
-- Properties
unifiesDClosed : (t, u : Term sig k) -> DClosed (Unifies t u)
unifiesDClosed t u f g prf1 prf2 = Calc $
|~ f <$> t
~~ (prf1.sub . g) <$> t ...(subCong prf1.prf t)
~~ prf1.sub <$> g <$> t ...(subAssoc prf1.sub g t)
~~ prf1.sub <$> g <$> u ...(cong (prf1.sub <$>) prf2)
~~ (prf1.sub . g) <$> u ..<(subAssoc prf1.sub g u)
~~ f <$> u ..<(subCong prf1.prf u)
optimistLemma :
{q : Property sig j} ->
{a : SFin j -> Term sig k} ->
{f : SFin k -> Term sig m} ->
{g : SFin m -> Term sig n} ->
DClosed p ->
(Max (Extension p a)).Prop f ->
(Max (Extension q (f . a))).Prop g ->
(Max (Extension (All [p, q]) a)).Prop (g . f)
optimistLemma closed (x, max1) (y, max2) =
([ closed ((g . f) . a) (f . a) (compLte (MkLte g (\i => Refl)) a) x
, q.cong (\i => sym $ subAssoc g f (a i)) y
], \h, [x', y'] =>
let prf1 = max1 h x' in
let y'' = q.cong (\i => trans (subCong prf1.prf (a i)) (subAssoc prf1.sub f (a i))) y' in
let prf2 = max2 prf1.sub y'' in
MkLte
{ sub = prf2.sub
, prf = \i => Calc $
|~ h i
~~ prf1.sub <$> f i ...(prf1.prf i)
~~ (prf2.sub . g) <$> f i ...(subCong (prf2.prf) (f i))
~~ prf2.sub <$> (g <$> f i) ...(subAssoc prf2.sub g (f i))
}
)
|