summaryrefslogtreecommitdiff
path: root/src/Data/Term/Unify.idr
blob: b87ab210225f3f5b292f2b63cb73d8ef18d9b5cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
module Data.Term.Unify

import Data.DPair
import Data.Fin.Occurs
import Data.Fin.Strong
import Data.Maybe.Properties
import Data.Singleton
import Data.Term
import Data.Term.Property
import Data.Term.Zipper

import Decidable.Equality

import Syntax.PreorderReasoning

-- Check -----------------------------------------------------------------------

export
check : SFin k -> Term sig k -> Maybe (Term sig (pred k))
checkAll : SFin k -> Vect n (Term sig k) -> Maybe (Vect n (Term sig (pred k)))

check x (Var y) = Var' <$> thick x y
check x (Op op ts) = Op op <$> checkAll x ts

checkAll x [] = Just []
checkAll x (t :: ts) = [| check x t :: checkAll x ts |]

-- Properties

export
checkOccurs :
  (x : SFin k) ->
  (zip : Zipper sig k) ->
  IsNothing (check x (zip + Var' x))
checkAllOccurs :
  (x : SFin k) ->
  (i : SFin n) ->
  (ts : Vect (pred n) (Term sig k)) ->
  (zip : Zipper sig k) ->
  IsNothing (checkAll x (insertAt' i (zip + Var' x) ts))

checkOccurs x Top = mapNothing Var' (thickRefl x)
checkOccurs x (Op op i ts zip) = mapNothing (Op op) (checkAllOccurs x i ts zip)

checkAllOccurs x FZ ts zip =
  appLeftNothingIsNothing
    (appRightNothingIsNothing (Just (::)) (checkOccurs x zip))
    (checkAll x ts)
checkAllOccurs x (FS i) (t :: ts) zip =
  appRightNothingIsNothing
    (Just (::) <*> check x t)
    (checkAllOccurs x i ts zip)

export
checkNothing :
  (x : SFin k) ->
  (t : Term sig k) ->
  (0 _ : IsNothing (check x t)) ->
  (zip : Zipper sig k ** t = zip + Var' x)
checkAllNothing :
  (x : SFin k) ->
  (t : Term sig k) ->
  (ts : Vect n (Term sig k)) ->
  (0 _ : IsNothing (checkAll x (t :: ts))) ->
  (i ** ts' ** zip : Zipper sig k ** t :: ts = insertAt' i (zip + Var' x) ts')

checkNothing x (Var y) prf =
  (Top ** sym (cong Var (thickNothing x y (mapNothingInverse Var' (thick x y) prf))))
checkNothing x (Op op (t :: ts)) prf =
  let (i ** ts' ** zip ** prf) = checkAllNothing x t ts (mapNothingInverse (Op op) _ prf) in
  (Op op i ts' zip ** cong (Op op) prf)

checkAllNothing x t ts prf with (appNothingInverse (Just (::) <*> check x t) (checkAll x ts) prf)
  _ | Left prf' = case appNothingInverse (Just (::)) (check x t) prf' of
      Right prf =>
        let (zip ** prf) = checkNothing x t prf in
        (FZ ** ts ** zip ** cong (:: ts) prf)
  checkAllNothing x t (t' :: ts) prf | Right prf' =
    let (i ** ts ** zip ** prf) = checkAllNothing x t' ts prf' in
    (FS i ** t :: ts ** zip ** cong (t ::) prf)

export
checkThin :
  (x : SFin (S k)) ->
  (t : Term sig k) ->
  IsJust (check x (pure (thin x) <$> t))
checkAllThin :
  (x : SFin (S k)) ->
  (ts : Vect n (Term sig k)) ->
  IsJust (checkAll x (map (pure (thin x) <$>) ts))

checkThin x (Var y) =
  mapIsJust Var' $
  thickNeq x (thin x y) (\prf => thinSkips x y $ sym prf)
checkThin x (Op op ts) = mapIsJust (Op op) (checkAllThin x ts)

checkAllThin x [] = ItIsJust
checkAllThin x (t :: ts) =
  appIsJust
    (appIsJust ItIsJust (checkThin x t))
    (checkAllThin x ts)

export
checkJust :
  (x : SFin k) ->
  (t : Term sig k) ->
  (0 _ : check x t = Just u) ->
  t = pure (thin x) <$> u
checkAllJust :
  (x : SFin k) ->
  (ts : Vect n (Term sig k)) ->
  (0 _ : checkAll x ts = Just us) ->
  ts = map (pure (thin x) <$>) us

checkJust x (Var y) prf =
  let 0 z = mapJustInverse Var' (thick x y) prf in
  let 0 prf = thickJust x y (fst z.snd) in
  sym $ Calc $
    |~ pure (thin x) <$> u
    ~~ pure (thin x) <$> Var' z.fst ...(cong (pure (thin x) <$>) $ snd z.snd)
    ~~ Var' y                       ...(cong Var' prf)
checkJust x (Op op ts) prf =
  let 0 z = mapJustInverse (Op op) (checkAll x ts) prf in
  let 0 prf = checkAllJust x ts (fst z.snd) in
  Calc $
    |~ Op op ts
    ~~ pure (thin x) <$> Op op z.fst ...(cong (Op op) prf)
    ~~ pure (thin x) <$> u           ...(sym $ cong (pure (thin x) <$>) $ snd z.snd)

checkAllJust x [] Refl = Refl
checkAllJust x (t :: ts) prf =
  let 0 z = appJustInverse (Just (::) <*> check x t) (checkAll x ts) prf in
  let 0 w = appJustInverse (Just (::)) (check x t) (fst z.snd.snd) in
  Calc $
    |~ t :: ts
    ~~ map (pure (thin x) <$>) (w.snd.fst :: z.snd.fst)    ...(cong2 (::) (checkJust x t (fst $ snd w.snd.snd)) (checkAllJust x ts (fst $ snd z.snd.snd)))
    ~~ map (pure (thin x) <$>) (w.fst w.snd.fst z.snd.fst) ...(cong (\f => map (pure (thin x) <$>) (f w.snd.fst z.snd.fst)) $ injective $ fst w.snd.snd)
    ~~ map (pure (thin x) <$>) (z.fst z.snd.fst)           ...(sym $ cong (\f => map (pure (thin x) <$>) (f z.snd.fst)) $ snd $ snd w.snd.snd)
    ~~ map (pure (thin x) <$>) us                          ...(sym $ cong (map (pure (thin x) <$>)) $ snd $ snd z.snd.snd)

-- Single Variable Substitution ------------------------------------------------

export
for : Term sig (pred k) -> SFin k -> SFin k -> Term sig (pred k)
(t `for` x) y = maybe t Var' (thick x y)

export
forRefl :
  (0 u : Term sig (pred k)) ->
  (x : SFin k) ->
  (u `for` x) x = u
forRefl u x = cong (maybe u Var') $ extractIsNothing $ thickRefl x

export
forThin :
  (0 t : Term sig (pred k)) ->
  (x : SFin k) ->
  (t `for` x) . thin x .=. Var'
forThin t x i = cong (maybe t Var') (thickThin x i)

export
forUnifies :
  (x : SFin k) ->
  (t : Term sig k) ->
  (0 _ : check x t = Just u) ->
  (u `for` x) <$> t = (u `for` x) <$> Var' x
forUnifies x t prf = Calc $
  |~ (u `for` x) <$> t
  ~~ (u `for` x) <$> pure (thin x) <$> u ...(cong ((u `for` x) <$>) $ checkJust x t prf)
  ~~ (u `for` x) . thin x <$> u          ...(sym $ subAssoc (u `for` x) (pure (thin x)) u)
  ~~ Var' <$> u                          ...(subCong (forThin u x) u)
  ~~ u                                   ...(subUnit u)
  ~~ (u `for` x) <$> Var' x              ...(sym $ forRefl u x)

-- Substitution List -----------------------------------------------------------

public export
data AList : Signature -> Nat -> Nat -> Type where
  Lin : AList sig n n
  (:<) : AList sig k n -> (Term sig k, SFin (S k)) -> AList sig (S k) n

%name AList sub

namespace Exists
  public export
  (:<) : Exists (AList sig n) -> (Term sig n, SFin (S n)) -> Exists (AList sig (S n))
  Evidence _ sub :< tx = Evidence _ (sub :< tx)

export
eval : AList sig k n -> SFin k -> Term sig n
eval [<] = Var'
eval (sub :< (t, x)) = eval sub . (t `for` x)

export
(++) : AList sig k n -> AList sig j k -> AList sig j n
sub ++ [<] = sub
sub ++ sub1 :< tx = (sub ++ sub1) :< tx

-- Properties

export
recover : Singleton k -> AList sig k n -> Singleton n
recover x [<] = x
recover x (sub :< _) = recover (pure pred <*> x) sub

export
evalHomo :
  (0 sub2 : AList sig k n) ->
  (sub1 : AList sig j k) ->
  eval (sub2 ++ sub1) .=. eval sub2 . eval sub1
evalHomo sub2 [<] i = Refl
evalHomo sub2 (sub1 :< (t, x)) i = Calc $
  |~ eval (sub2 ++ sub1) <$> (t `for` x) i
  ~~ (eval sub2 . eval sub1) <$> (t `for` x) i ...(subCong (evalHomo sub2 sub1) ((t `for` x) i))
  ~~ eval sub2 <$> eval sub1 <$> (t `for` x) i ...(subAssoc (eval sub2) (eval sub1) ((t `for` x) i))

export
appendUnitLeft : (sub : AList sig k n) -> [<] ++ sub = sub
appendUnitLeft [<] = Refl
appendUnitLeft (sub :< tx) = cong (:< tx) (appendUnitLeft sub)

export
appendAssoc :
  (sub3 : AList sig _ _) ->
  (sub2 : AList sig _ _) ->
  (sub1 : AList sig _ _) ->
  sub3 ++ (sub2 ++ sub1) = (sub3 ++ sub2) ++ sub1
appendAssoc sub3 sub2 [<] = Refl
appendAssoc sub3 sub2 (sub1 :< tx) = cong (:< tx) (appendAssoc sub3 sub2 sub1)

-- Unification -----------------------------------------------------------------

coerce : {0 op, op' : sig.Op} -> op = op' -> Vect op'.fst a -> Vect op.fst a
coerce Refl = id

flexFlex : SFin (S n) -> SFin (S n) -> Exists (AList sig (S n))
flexFlex x y = case thick x y of
  Just z => Evidence _ [<(Var' z, x)]
  Nothing => Evidence _ [<]

flexRigid : SFin (S n) -> Term sig (S n) -> Maybe (Exists (AList sig (S n)))
flexRigid x t = case check x t of
  Just u => Just (Evidence _ [<(u, x)])
  Nothing => Nothing

export
amgu :
  DecOp sig =>
  (t, u : Term sig n) ->
  Exists (AList sig n) ->
  Maybe (Exists (AList sig n))
amguAll :
  DecOp sig =>
  (ts, us : Vect k (Term sig n)) ->
  Exists (AList sig n) ->
  Maybe (Exists (AList sig n))

amgu (Op op ts) (Op op' us) acc with (decOp (Evidence _ op) (Evidence _ op'))
  amgu (Op op ts) (Op op us) acc | Yes Refl = amguAll ts us acc
  _ | No neq = Nothing
amgu (Var x) (Var y) (Evidence _ [<]) = Just (flexFlex x y)
amgu (Var x) (Op op' us) (Evidence _ [<]) = flexRigid x (Op op' us)
amgu (Op op ts) (Var y) (Evidence _ [<]) = flexRigid y (Op op ts)
amgu t@(Var _) u@(Var _) (Evidence _ (sub :< (v, z))) =
  (:< (v, z)) <$> amgu ((v `for` z) <$> t) ((v `for` z) <$> u) (Evidence _ sub)
amgu t@(Var _) u@(Op _ _) (Evidence _ (sub :< (v, z))) =
  (:< (v, z)) <$> amgu ((v `for` z) <$> t) ((v `for` z) <$> u) (Evidence _ sub)
amgu t@(Op _ _) u@(Var _) (Evidence _ (sub :< (v, z))) =
  (:< (v, z)) <$> amgu ((v `for` z) <$> t) ((v `for` z) <$> u) (Evidence _ sub)

amguAll [] [] acc = Just acc
amguAll (t :: ts) (u :: us) acc = do
  acc <- amgu t u acc
  amguAll ts us acc

export
mgu : DecOp sig => (t, u : Term sig n) -> Maybe (Exists (AList sig n))
mgu t u = amgu t u (Evidence _ [<])

-- Properties

export
trivialUnify :
  (0 f : SFin n -> Term sig k) ->
  (t : Term sig n) ->
  (Max (Extension (Unifies t t) f)).Prop Var'
trivialUnify f t = (Refl , \g, prf => varMax g)

export
varElim :
  (x : SFin (S n)) ->
  (t : Term sig (S n)) ->
  (0 _ : check x t = Just u) ->
  (Max (Unifies (Var x) t)).Prop (u `for` x)
varElim x t prf =
  ( sym $ forUnifies x t prf
  , \g, prf' => MkLte (g . thin x) (\i =>
    case decEq x i of
      Yes Refl =>
       Calc $
        |~ g x
        ~~ g <$> t                        ...(prf')
        ~~ g <$> pure (thin x) <$> u      ...(cong (g <$>) $ checkJust i t prf)
        ~~ (g . thin x) <$> u             ...(sym $ subAssoc g (pure (thin x)) u)
        ~~ (g . thin x) <$> (u `for` x) x ..<(cong ((g . thin x) <$>) $ forRefl u x)
      No neq =>
        let isJust = thickNeq x i neq in
        let (y ** thickIsJustY) = extractIsJust isJust in
        let thinXYIsI = thickJust x i thickIsJustY in
        Calc $
          |~ g i
          ~~ g (thin x y)                            ..<(cong g thinXYIsI)
          ~~ (g . thin x) <$> Var' y                 ...(Refl)
          ~~ (g . thin x) <$> (u `for` x) (thin x y) ..<(cong ((g . thin x) <$>) $ forThin u x y)
          ~~ (g . thin x) <$> (u `for` x) i          ...(cong (((g . thin x) <$>) . (u `for` x)) $ thinXYIsI))
  )

flexFlexUnifies :
  (x, y : SFin (S n)) ->
  (Max {sig} (Unifies (Var x) (Var y))).Prop (eval (flexFlex x y).snd)
flexFlexUnifies x y with (thick x y) proof prf
  _ | Just z =
    (Max (Unifies (Var x) (Var y))).cong
      (\i => sym $ subUnit ((Var' z `for` x) i))
      (varElim x (Var y) (cong (map Var') prf))
  _ | Nothing =
    rewrite thickNothing x y (rewrite prf in ItIsNothing) in
    trivialUnify Var' (Var y)

flexRigidUnifies :
  (x : SFin (S n)) ->
  (t : Term sig (S n)) ->
  (0 _ : flexRigid x t = Just sub) ->
  (Max (Unifies (Var x) t)).Prop (eval sub.snd)
flexRigidUnifies x t ok with (check x t) proof prf
  flexRigidUnifies x t Refl | Just u =
    (Max (Unifies (Var x) t)).cong
      (\i => sym $ subUnit ((u `for` x) i))
      (varElim x t prf)

flexRigidFails :
  (x : SFin (S k)) ->
  (op : sig.Operator j) ->
  (ts : Vect j (Term sig (S k))) ->
  (0 _ : IsNothing (flexRigid x (Op op ts))) ->
  Nothing (Unifies (Var x) (Op op ts))
flexRigidFails x op ts isNothing f prf' with (check x (Op op ts)) proof prf
  _ | Nothing =
    let
      (zip ** occurs) = checkNothing x (Op op ts) (rewrite prf in ItIsNothing)
      cycle : (f x = (f <$> zip) + f x)
      cycle = Calc $
        |~ f x
        ~~ f <$> Op op ts    ...(prf')
        ~~ f <$> zip + Var x ...(cong (f <$>) occurs)
        ~~ (f <$> zip) + f x ...(actionHomo f zip (Var x))
      zipIsTop : (zip = Top)
      zipIsTop = invertActionTop zip $ noCycles (f <$> zip) (f x) (sym cycle)
      opIsVar : (Op op ts = Var x)
      opIsVar = trans occurs (cong (+ Var x) zipIsTop)
    in
    absurd opIsVar

stepEquiv :
  (t, u : Term sig (S k)) ->
  (sub : AList sig k j) ->
  (v : Term sig k) ->
  (x : SFin (S k)) ->
  Extension (Unifies t u) (eval (sub :< (v, x))) <=>
  Extension (Unifies ((v `for` x) <$> t) ((v `for` x) <$> u)) (eval sub)
stepEquiv t u sub v x = extendUnify t u (v `for` x) (eval sub)

parameters {auto _ : DecOp sig}
  public export
  data AmguProof : (t, u : Term sig k) -> Exists (AList sig k) -> Type where
    Success :
      {0 sub : Exists (AList sig k)} ->
      (sub' : Exists (AList sig sub.fst)) ->
      (Max (Extension (Unifies t u) (eval sub.snd))).Prop (eval sub'.snd) ->
      amgu t u sub = Just (Evidence sub'.fst (sub'.snd ++ sub.snd)) ->
      AmguProof t u sub
    Failure :
      {0 sub : Exists (AList sig k)} ->
      Nothing (Extension (Unifies t u) (eval sub.snd)) ->
      IsNothing (amgu t u sub) ->
      AmguProof t u sub

  public export
  data AmguAllProof : (ts, us : Vect n (Term sig k)) -> Exists (AList sig k) -> Type where
    SuccessAll :
      {0 sub : Exists (AList sig k)} ->
      (sub' : Exists (AList sig sub.fst)) ->
      (Max (Extension (UnifiesAll ts us) (eval sub.snd))).Prop (eval sub'.snd) ->
      amguAll ts us sub = Just (Evidence sub'.fst (sub'.snd ++ sub.snd)) ->
      AmguAllProof ts us sub
    FailureAll :
      {0 sub : Exists (AList sig k)} ->
      Nothing (Extension (UnifiesAll ts us) (eval sub.snd)) ->
      IsNothing (amguAll ts us sub) ->
      AmguAllProof ts us sub

export
amguProof : DecOp sig => (t, u : Term sig n) -> (sub : Exists (AList sig n)) -> AmguProof t u sub
export
amguAllProof :
  DecOp sig =>
  (ts, us : Vect k (Term sig n)) ->
  (sub : Exists (AList sig n)) ->
  AmguAllProof ts us sub

amguProof (Op op ts) (Op op' us) sub with (decOp (Evidence _ op) (Evidence _ op')) proof prf
  amguProof (Op op ts) (Op op us) sub | Yes Refl
    with (amguAllProof ts us sub)
    _ | SuccessAll sub' val prf' =
      let
        cong :
          Max (Extension (Unifies (Op op ts) (Op op us)) (eval sub.snd)) <=>
          Max (Extension (UnifiesAll ts us) (eval sub.snd))
        cong = maxCong $ extendCong (eval sub.snd) $ unifiesOp op ts us
      in
      Success sub'
        (cong.rightToLeft (eval sub'.snd) val)
        (rewrite prf in prf')
    _ | FailureAll absurd prf' =
      Failure
        (nothingEquiv (symmetric $ extendCong (eval sub.snd) $ unifiesOp op ts us) absurd)
        (rewrite prf in prf')
  _ | No neq =
    Failure
      (\f, prf => neq $ opInjectiveOp prf)
      (rewrite prf in ItIsNothing)
amguProof (Var x) (Var y) (Evidence _ [<]) with (thick x y) proof prf
  _ | Just z = Success (flexFlex x y) (flexFlexUnifies x y) (rewrite prf in Refl)
  _ | Nothing = Success (flexFlex x y) (flexFlexUnifies x y) (rewrite prf in Refl)
amguProof (Var x) (Op op' us) (Evidence _ [<]) with (flexRigid x (Op op' us)) proof prf
  _ | Just sub@(Evidence _ _) = Success sub (flexRigidUnifies x (Op op' us) prf) prf
  _ | Nothing =
    Failure
      (flexRigidFails x op' us (rewrite prf in ItIsNothing))
      (rewrite prf in ItIsNothing)
amguProof (Op op ts) (Var y) (Evidence _ [<]) with (flexRigid y (Op op ts)) proof prf
  _ | Just sub@(Evidence _ sub') =
    let
      cong :
        Max (Extension (Unifies (Var y) (Op op ts)) Var') <=>
        Max (Extension (Unifies (Op op ts) (Var y)) Var')
      cong = maxCong $ extendCong Var' $ unifiesSym (Var y) (Op op ts)
    in
    Success sub
      (cong.leftToRight (eval sub.snd) (flexRigidUnifies y (Op op ts) prf))
      prf
  _ | Nothing =
    let
      cong :
        Nothing (Extension (Unifies (Var y) (Op op ts)) Var') ->
        Nothing (Extension (Unifies (Op op ts) (Var y)) Var')
      cong = nothingEquiv $ extendCong Var' $ unifiesSym (Var y) (Op op ts)
    in
    Failure
      (cong $ flexRigidFails y op ts (rewrite prf in ItIsNothing))
      (rewrite prf in ItIsNothing)
amguProof (Var x) (Var y) (Evidence l (sub :< (v, z)))
  with (amguProof ((v `for` z) x) ((v `for` z) y) (Evidence _ sub))
  _ | Success sub' val prf =
    let
      cong' :
        Max (Extension (Unifies (Var x) (Var y)) (eval sub . (v `for` z))) <=>
        Max (Extension (Unifies ((v `for` z) x) ((v `for` z) y)) (eval sub))
      cong' = maxCong $ stepEquiv (Var x) (Var y) sub v z
    in
    Success sub'
      (cong'.rightToLeft (eval sub'.snd) val)
      (cong (map (:< (v, z))) prf)
  _ | Failure absurd prf =
    Failure
      (nothingEquiv (symmetric $ stepEquiv (Var x) (Var y) sub v z) absurd)
      (mapNothing (:< (v, z)) prf)
amguProof (Var x) (Op op' us) (Evidence _ (sub :< (v, z)))
  with (amguProof ((v `for` z) x) ((v `for` z) <$> Op op' us) (Evidence _ sub))
  _ | Success sub' val prf =
    let
      cong' :
        Max (Extension (Unifies (Var x) (Op op' us)) (eval sub . (v `for` z))) <=>
        Max (Extension (Unifies ((v `for` z) x) ((v `for` z) <$> Op op' us)) (eval sub))
      cong' = maxCong $ stepEquiv (Var x) (Op op' us) sub v z
    in
    Success sub'
      (cong'.rightToLeft (eval sub'.snd) val)
      (cong (map (:< (v, z))) prf)
  _ | Failure absurd prf =
    Failure
      (nothingEquiv (symmetric $ stepEquiv (Var x) (Op op' us) sub v z) absurd)
      (mapNothing (:< (v, z)) prf)
amguProof (Op op ts) (Var y) (Evidence _ (sub :< (v, z)))
  with (amguProof ((v `for` z) <$> Op op ts) ((v `for` z) y) (Evidence _ sub))
  _ | Success sub' val prf =
    let
      cong' :
        Max (Extension (Unifies (Op op ts) (Var y)) (eval sub . (v `for` z))) <=>
        Max (Extension (Unifies ((v `for` z) <$> Op op ts) ((v `for` z) y)) (eval sub))
      cong' = maxCong $ stepEquiv (Op op ts) (Var y) sub v z
    in
    Success sub'
      (cong'.rightToLeft (eval sub'.snd) val)
      (cong (map (:< (v, z))) prf)
  _ | Failure absurd prf =
    Failure
      (nothingEquiv (symmetric $ stepEquiv (Op op ts) (Var y) sub v z) absurd)
      (mapNothing (:< (v, z)) prf)

amguAllProof [] [] (Evidence _ sub) =
  SuccessAll (Evidence _ [<])
    ([], \g, x => varMax g)
    (sym $ cong (\sub => Just (Evidence _ sub)) $ appendUnitLeft sub)
amguAllProof (t :: ts) (u :: us) sub with (amguProof t u sub)
  _ | Success sub' val prf with (amguAllProof ts us (Evidence _ (sub'.snd ++ sub.snd)))
    _ | SuccessAll sub'' val' prf' =
      let
        cong' =
          maxCong $
          extendCong2 (evalHomo sub'.snd sub.snd) (reflexive {x = UnifiesAll ts us})
        opt =
          optimistLemma (unifiesDClosed t u) val $
          cong'.leftToRight (eval sub''.snd) val'
      in
      SuccessAll (Evidence _ (sub''.snd ++ sub'.snd))
        ((Max (Extension (UnifiesAll (t :: ts) (u :: us)) (eval sub.snd))).cong
          (\i => sym $ evalHomo sub''.snd sub'.snd i)
          opt)
        (rewrite prf in rewrite prf' in
          cong (\sub => Just (Evidence sub''.fst sub)) $
          appendAssoc sub''.snd sub'.snd sub.snd)
    _ | FailureAll absurd prf' =
      let
        cong' = extendCong2 (evalHomo sub'.snd sub.snd) (reflexive {x = UnifiesAll ts us})
      in
      FailureAll
        (failTail val $ nothingEquiv cong' absurd)
        (rewrite prf in prf')
  _ | Failure absurd prf =
    FailureAll
      (failHead absurd)
      (bindNothing prf (amguAll ts us))

parameters {auto _ : DecOp sig}
  namespace MguProof
    public export
    data MguProof : (t, u : Term sig k) -> Type where
      Success :
        (sub : Exists (AList sig k)) ->
        (Max (Unifies t u)).Prop (eval sub.snd) ->
        mgu t u = Just sub ->
        MguProof t u
      Failure :
        Nothing (Unifies t u) ->
        IsNothing (mgu t u) ->
        MguProof t u

export
mguProof : DecOp sig => (t, u : Term sig k) -> MguProof t u
mguProof t u with (amguProof t u (Evidence _ [<]))
  _ | Success (Evidence _ sub) val prf = Success (Evidence _ sub) val prf
  _ | Failure absurd prf = Failure absurd prf