1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
|
module Data.Term.Unify
import Data.Fin.Occurs
import Data.Term
import Data.Term.Property
import Data.Term.Zipper
import Decidable.Equality
import Syntax.PreorderReasoning
-- Check -----------------------------------------------------------------------
export
check : {k : Nat} -> Fin (S k) -> Term sig (S k) -> Maybe (Term sig k)
checkAll : {k : Nat} -> Fin (S k) -> Vect n (Term sig (S k)) -> Maybe (Vect n (Term sig k))
check x (Var y) = Var <$> thick x y
check x (Op op ts) = Op op <$> checkAll x ts
checkAll x [] = Just []
checkAll x (t :: ts) = [| check x t :: checkAll x ts |]
-- Properties
public export
data CheckProof : Fin (S k) -> Term sig (S k) -> Maybe (Term sig k) -> Type where
Occurs : (zip : Zipper sig (S k)) -> res = Nothing -> CheckProof x (zip + Var x) res
Stronger : (t : Term sig k) -> res = Just t -> CheckProof x (pure (thin x) <$> t) res
data CheckAllProof : Fin (S k) -> Vect n (Term sig (S k)) -> Maybe (Vect n (Term sig k)) -> Type where
OccursAt :
(i : Fin (S n)) ->
(ts : Vect n (Term sig (S k))) ->
(zip : Zipper sig (S k)) ->
res = Nothing ->
CheckAllProof x (insertAt i (zip + Var x) ts) res
AllStronger :
(ts : Vect n (Term sig k)) ->
res = Just ts ->
CheckAllProof x (map (pure (thin x) <$>) ts) res
export
checkProof : {k : Nat} -> (x : Fin (S k)) -> (t : Term sig (S k)) -> CheckProof x t (check x t)
checkAllProof :
{k : Nat} ->
(x : Fin (S k)) ->
(ts : Vect n (Term sig (S k))) ->
CheckAllProof x ts (checkAll x ts)
checkProof x (Var y) with (thickProof x y)
checkProof x (Var x) | Equal prf = Occurs Top (cong (Var <$>) prf)
checkProof x (Var _) | Thinned y prf = Stronger (Var y) (cong (Var <$>) prf)
checkProof x (Op op ts) with (checkAllProof x ts)
checkProof x (Op op _) | OccursAt i ts zip prf = Occurs (Op op i ts zip) (cong (Op op <$>) prf)
checkProof x (Op op _) | AllStronger ts prf = Stronger (Op op ts) (cong (Op op <$>) prf)
checkAllProof x [] = AllStronger [] Refl
checkAllProof x (t :: ts) with (checkProof x t)
checkAllProof x (_ :: ts) | Occurs zip prf =
OccursAt FZ ts zip (cong (\t => [| t :: checkAll x ts |]) prf)
checkAllProof x (_ :: ts) | Stronger u prf with (checkAllProof x ts)
checkAllProof x (_ :: _) | Stronger u prf | OccursAt i ts zip prf' =
OccursAt (FS i) (_ :: ts) zip (cong2 (\t, ts => [| t :: ts |]) prf prf')
checkAllProof x (_ :: _) | Stronger u prf | AllStronger us prf' =
AllStronger (u :: us) (cong2 (\t, ts => [| t :: ts |]) prf prf')
-- Single Variable Substitution ------------------------------------------------
export
for : {k : Nat} -> Term sig k -> Fin (S k) -> Fin (S k) -> Term sig k
(t `for` x) y = maybe t Var (thick x y)
export
forRefl :
(0 u : Term sig k) ->
(x : Fin (S k)) ->
(u `for` x) x = u
forRefl u x = cong (maybe u Var) $ thickRefl x
export
forThin :
(0 t : Term sig k) ->
(x : Fin (S k)) ->
(t `for` x) . thin x .=. Var
forThin t x i = cong (maybe t Var) (thickThin x i)
export
forUnifies :
(x : Fin (S k)) ->
(t : Term sig k) ->
(t `for` x) <$> pure (thin x) <$> t = (t `for` x) <$> Var x
forUnifies x t = Calc $
|~ (t `for` x) <$> pure (thin x) <$> t
~~ (t `for` x) . thin x <$> t ...(sym $ subAssoc (t `for` x) (pure (thin x)) t)
~~ Var <$> t ...(subExtensional (forThin t x) t)
~~ t ...(subUnit t)
~~ (t `for` x) <$> Var x ...(sym $ forRefl t x)
-- Substitution List -----------------------------------------------------------
public export
data AList : Signature -> Nat -> Nat -> Type where
Lin : AList sig n n
(:<) : AList sig k n -> (Term sig k, Fin (S k)) -> AList sig (S k) n
%name AList sub
namespace Exists
public export
(:<) : Exists (AList sig n) -> (Term sig n, Fin (S n)) -> Exists (AList sig (S n))
Evidence _ sub :< tx = Evidence _ (sub :< tx)
export
eval : {k : Nat} -> AList sig k n -> Fin k -> Term sig n
eval [<] = Var
eval (sub :< (t, x)) = eval sub . (t `for` x)
export
(++) : AList sig k n -> AList sig j k -> AList sig j n
sub ++ [<] = sub
sub ++ sub1 :< tx = (sub ++ sub1) :< tx
-- Properties
export
evalHomo :
(0 sub2 : AList sig k n) ->
(sub1 : AList sig j k) ->
eval (sub2 ++ sub1) .=. eval sub2 . eval sub1
evalHomo sub2 [<] i = Refl
evalHomo sub2 (sub1 :< (t, x)) i = Calc $
|~ eval (sub2 ++ sub1) <$> (t `for` x) i
~~ (eval sub2 . eval sub1) <$> (t `for` x) i ...(subExtensional (evalHomo sub2 sub1) ((t `for` x) i))
~~ eval sub2 <$> eval sub1 <$> (t `for` x) i ...(subAssoc (eval sub2) (eval sub1) ((t `for` x) i))
export
appendUnitLeft : (sub : AList sig k n) -> [<] ++ sub = sub
appendUnitLeft [<] = Refl
appendUnitLeft (sub :< tx) = cong (:< tx) (appendUnitLeft sub)
export
appendAssoc :
(sub3 : AList sig _ _) ->
(sub2 : AList sig _ _) ->
(sub1 : AList sig _ _) ->
sub3 ++ (sub2 ++ sub1) = (sub3 ++ sub2) ++ sub1
appendAssoc sub3 sub2 [<] = Refl
appendAssoc sub3 sub2 (sub1 :< tx) = cong (:< tx) (appendAssoc sub3 sub2 sub1)
-- Unification -----------------------------------------------------------------
coerce : {0 op, op' : sig.Op} -> op = op' -> Vect op'.fst a -> Vect op.fst a
coerce Refl = id
flexFlex : {n : Nat} -> Fin n -> Fin n -> (k ** AList sig n k)
flexFlex {n = S n} x y = case thick x y of
Just z => (_ **[<(Var z, x)])
Nothing => (_ ** [<])
flexRigid : {n : Nat} -> Fin n -> Term sig n -> Maybe (Exists (AList sig n))
flexRigid {n = S n} x t = case check x t of
Just u => Just (Evidence _ [<(u, x)])
Nothing => Nothing
export
amgu :
DecOp sig =>
{n : Nat} ->
(t, u : Term sig n) ->
AList sig n k ->
Maybe (Exists (AList sig n))
amguAll :
DecOp sig =>
{n : Nat} ->
(ts, us : Vect j (Term sig n)) ->
AList sig n k ->
Maybe (Exists (AList sig n))
amgu (Op op ts) (Op op' us) acc with (decOp (Evidence _ op) (Evidence _ op'))
amgu (Op op ts) (Op op us) acc | Yes Refl = amguAll ts us acc
_ | No neq = Nothing
amgu (Var x) (Var y) [<] = Just (Evidence _ (flexFlex x y).snd)
amgu (Var x) (Op op' us) [<] = flexRigid x (Op op' us)
amgu (Op op ts) (Var y) [<] = flexRigid y (Op op ts)
amgu t@(Var _) u@(Var _) (sub :< (v, z)) =
(:< (v, z)) <$> amgu ((v `for` z) <$> t) ((v `for` z) <$> u) sub
amgu t@(Var _) u@(Op _ _) (sub :< (v, z)) =
(:< (v, z)) <$> amgu ((v `for` z) <$> t) ((v `for` z) <$> u) sub
amgu t@(Op _ _) u@(Var _) (sub :< (v, z)) =
(:< (v, z)) <$> amgu ((v `for` z) <$> t) ((v `for` z) <$> u) sub
amguAll [] [] acc = Just (Evidence _ acc)
amguAll (t :: ts) (u :: us) acc = do
acc <- amgu t u acc
amguAll ts us acc.snd
export
mgu : DecOp sig => {n : Nat} -> (t, u : Term sig n) -> Maybe (Exists (AList sig n))
mgu t u = amgu t u [<]
-- Properties
export
trivialUnify :
(0 f : Fin n -> Term sig k) ->
(t : Term sig n) ->
(Max (Extension (Unifies t t) f)).Prop Var
trivialUnify f t = (Refl , \g, prf => varMax g)
export
varElim :
{n : Nat} ->
(x : Fin (S n)) ->
(t : Term sig n) ->
(Max (Unifies (Var x) (pure (thin x) <$> t))).Prop (t `for` x)
varElim x t =
( sym $ forUnifies x t
, \g, prf' => MkLte (g . thin x) (lteProof g prf')
)
where
lteProof :
forall k.
(g : Fin (S n) -> Term sig k) ->
(Unifies (Var x) (pure (thin x) <$> t)).Prop g ->
g .=. (g . thin x) . (t `for` x)
lteProof g prf i with (thickProof x i)
lteProof g prf _ | Equal prf' = Calc $
|~ g x
~~ g <$> pure (thin x) <$> t ...(prf)
~~ g . thin x <$> t ..<(subAssoc g (pure (thin x)) t)
~~ g . thin x <$> (t `for` x) x ..<(cong ((g . thin x <$>) . maybe t Var) prf')
lteProof g prf _ | Thinned i prf' = sym $ cong (g . thin x <$>) (forThin t x i)
flexFlexUnifies :
{n : Nat} ->
(x, y : Fin n) ->
(Max {sig} (Unifies (Var x) (Var y))).Prop (eval (flexFlex x y).snd)
flexFlexUnifies {n = S n} x y with (thickProof x y)
flexFlexUnifies {n = S n} x _ | Equal prf =
rewrite prf in
trivialUnify Var (Var x)
flexFlexUnifies {n = S n} x _ | Thinned y prf =
rewrite prf in
(Max (Unifies (Var x) (Var _))).cong
(\i => sym $ subUnit ((Var y `for` x) i))
(varElim x (Var y))
data FlexRigidProof : Fin n -> Term sig n -> Maybe (Exists (AList sig n)) -> Type where
NoUnifier : Nothing (Unifies (Var x) t) -> res = Nothing -> FlexRigidProof x t res
ElimVar :
{n : Nat} ->
(sub : AList sig k n) ->
(mgu : (Max (Unifies (Var x) t)).Prop (eval sub)) ->
res = Just (Evidence _ sub) ->
FlexRigidProof x t res
flexRigidProof :
{n : Nat} ->
(x : Fin n) ->
(op : sig.Operator k) ->
(ts : Vect k (Term sig n)) ->
FlexRigidProof x (Op op ts) (flexRigid x (Op op ts))
flexRigidProof {n = S n} x op ts with (checkProof x (Op op ts))
flexRigidProof x op _ | Occurs zip@(Op op i ts zip') prf =
rewrite prf in
NoUnifier
(\f, prf' =>
let
cycle : (f x = (f <$> zip) + f x)
cycle = Calc $
|~ f x
~~ f <$> Op op _ ...(prf')
~~ (f <$> zip) + f x ...(actionHomo f zip (Var x))
zipIsTop : (zip = Top)
zipIsTop = invertActionTop zip $ noCycles (f <$> zip) (f x) (sym cycle)
opIsVar : Op op (insertAt i (zip' + Var x) ts) = Var x
opIsVar = cong (+ Var x) zipIsTop
in
absurd opIsVar)
Refl
flexRigidProof x op _ | Stronger (Op op us) prf =
rewrite prf in
ElimVar
[<(Op op us, x)]
((Max (Unifies (Var x) (Op op _))).cong
(\i => sym $ subUnit ((Op op us `for` x) i))
(varElim x (Op op us)))
Refl
stepEquiv :
{k : Nat} ->
(t, u : Term sig (S k)) ->
(sub : AList sig k j) ->
(v : Term sig k) ->
(x : Fin (S k)) ->
Extension (Unifies t u) (eval (sub :< (v, x))) <=>
Extension (Unifies ((v `for` x) <$> t) ((v `for` x) <$> u)) (eval sub)
stepEquiv t u sub v x = extendUnify t u (v `for` x) (eval sub)
parameters {auto _ : DecOp sig}
public export
data AmguProof :
Term sig k ->
Term sig k ->
AList sig k n ->
Maybe (Exists (AList sig k)) ->
Type
where
Failure :
Nothing (Extension (Unifies t u) (eval sub)) ->
res = Nothing ->
AmguProof t u sub res
Success :
{j : Nat} ->
{0 sub : AList sig k n} ->
(sub' : AList sig n j) ->
(Max (Extension (Unifies t u) (eval sub))).Prop (eval sub') ->
res = Just (Evidence _ (sub' ++ sub)) ->
AmguProof t u sub res
public export
data AmguAllProof :
Vect j (Term sig k) ->
Vect j (Term sig k) ->
AList sig k n ->
Maybe (Exists (AList sig k)) ->
Type
where
FailureAll :
Nothing (Extension (UnifiesAll ts us) (eval sub)) ->
res = Nothing ->
AmguAllProof ts us sub res
SuccessAll :
{j : Nat} ->
{0 sub : AList sig k n} ->
(sub' : AList sig n j) ->
(Max (Extension (UnifiesAll ts us) (eval sub))).Prop (eval sub') ->
res = Just (Evidence _ (sub' ++ sub)) ->
AmguAllProof ts us sub res
export
amguProof :
DecOp sig =>
{k, n : Nat} ->
(t, u : Term sig k) ->
(sub : AList sig k n) ->
AmguProof t u sub (amgu t u sub)
export
amguAllProof :
DecOp sig =>
{k, n : Nat} ->
(ts, us : Vect j (Term sig k)) ->
(sub : AList sig k n) ->
AmguAllProof ts us sub (amguAll ts us sub)
amguProof (Op op ts) (Op op' us) sub with (decOp (Evidence _ op) (Evidence _ op')) proof prf
amguProof (Op op ts) (Op op us) sub | Yes Refl
with (amguAllProof ts us sub)
_ | SuccessAll sub' val prf' =
let
cong :
Max (Extension (Unifies (Op op ts) (Op op us)) (eval sub)) <=>
Max (Extension (UnifiesAll ts us) (eval sub))
cong = maxCong $ extendCong (eval sub) $ unifiesOp op ts us
in
Success sub'
(cong.rightToLeft (eval sub') val)
prf'
_ | FailureAll absurd prf' =
Failure
(nothingEquiv (symmetric $ extendCong (eval sub) $ unifiesOp op ts us) absurd)
prf'
_ | No neq =
Failure
(\f, prf => neq $ opInjectiveOp prf)
Refl
amguProof (Var x) (Var y) [<] =
Success
(flexFlex x y).snd
(flexFlexUnifies x y)
Refl
amguProof (Var x) (Op op' us) [<] with (flexRigidProof x op' us)
_ | NoUnifier absurd prf = Failure absurd prf
_ | ElimVar sub val prf = Success sub val prf
amguProof (Op op ts) (Var y) [<] with (flexRigidProof y op ts)
_ | NoUnifier absurd prf =
let
cong :
Nothing (Extension (Unifies (Var y) (Op op ts)) Var) ->
Nothing (Extension (Unifies (Op op ts) (Var y)) Var)
cong = nothingEquiv $ extendCong Var $ unifiesSym (Var y) (Op op ts)
in
Failure (cong absurd) prf
_ | ElimVar sub val prf =
let
cong :
Max (Extension (Unifies (Var y) (Op op ts)) Var) <=>
Max (Extension (Unifies (Op op ts) (Var y)) Var)
cong = maxCong $ extendCong Var $ unifiesSym (Var y) (Op op ts)
in
Success sub (cong.leftToRight _ val) prf
amguProof (Var x) (Var y) (sub :< (v, z))
with (amguProof ((v `for` z) x) ((v `for` z) y) sub)
_ | Success sub' val prf =
let
cong' :
Max (Extension (Unifies (Var x) (Var y)) (eval sub . (v `for` z))) <=>
Max (Extension (Unifies ((v `for` z) x) ((v `for` z) y)) (eval sub))
cong' = maxCong $ stepEquiv (Var x) (Var y) sub v z
in
Success sub'
(cong'.rightToLeft (eval sub') val)
(cong (map (:< (v, z))) prf)
_ | Failure absurd prf =
Failure
(nothingEquiv (symmetric $ stepEquiv (Var x) (Var y) sub v z) absurd)
(rewrite prf in Refl)
amguProof (Var x) (Op op' us) (sub :< (v, z))
with (amguProof ((v `for` z) x) ((v `for` z) <$> Op op' us) sub)
_ | Success sub' val prf =
let
cong' :
Max (Extension (Unifies (Var x) (Op op' us)) (eval sub . (v `for` z))) <=>
Max (Extension (Unifies ((v `for` z) x) ((v `for` z) <$> Op op' us)) (eval sub))
cong' = maxCong $ stepEquiv (Var x) (Op op' us) sub v z
in
Success sub'
(cong'.rightToLeft (eval sub') val)
(cong (map (:< (v, z))) prf)
_ | Failure absurd prf =
Failure
(nothingEquiv (symmetric $ stepEquiv (Var x) (Op op' us) sub v z) absurd)
(rewrite prf in Refl)
amguProof (Op op ts) (Var y) (sub :< (v, z))
with (amguProof ((v `for` z) <$> Op op ts) ((v `for` z) y) sub)
_ | Success sub' val prf =
let
cong' :
Max (Extension (Unifies (Op op ts) (Var y)) (eval sub . (v `for` z))) <=>
Max (Extension (Unifies ((v `for` z) <$> Op op ts) ((v `for` z) y)) (eval sub))
cong' = maxCong $ stepEquiv (Op op ts) (Var y) sub v z
in
Success sub'
(cong'.rightToLeft (eval sub') val)
(cong (map (:< (v, z))) prf)
_ | Failure absurd prf =
Failure
(nothingEquiv (symmetric $ stepEquiv (Op op ts) (Var y) sub v z) absurd)
(rewrite prf in Refl)
amguAllProof [] [] sub =
SuccessAll [<]
([], \g, x => varMax g)
(sym $ cong (\sub => Just (Evidence _ sub)) $ appendUnitLeft sub)
amguAllProof (t :: ts) (u :: us) sub with (amguProof t u sub)
_ | Success sub' val prf with (amguAllProof ts us (sub' ++ sub))
_ | SuccessAll sub'' val' prf' =
let
cong' =
maxCong $
extendCong2 (evalHomo sub' sub) (reflexive {x = UnifiesAll ts us})
opt =
optimistLemma (unifiesDClosed t u) val $
cong'.leftToRight (eval sub'') val'
in
SuccessAll (sub'' ++ sub')
((Max (Extension (UnifiesAll (t :: ts) (u :: us)) (eval sub))).cong
(\i => sym $ evalHomo sub'' sub' i)
opt)
(rewrite prf in rewrite prf' in
cong (\sub => Just (Evidence _ sub)) $
appendAssoc sub'' sub' sub)
_ | FailureAll absurd prf' =
let
cong' = extendCong2 (evalHomo sub' sub) (reflexive {x = UnifiesAll ts us})
in
FailureAll
(failTail val $ nothingEquiv cong' absurd)
(rewrite prf in prf')
_ | Failure absurd prf =
FailureAll
(failHead absurd)
(rewrite prf in Refl)
parameters {auto _ : DecOp sig}
namespace MguProof
public export
data MguProof : (t, u : Term sig k) -> Maybe (Exists (AList sig k)) -> Type where
Success :
(sub : AList sig k n) ->
(Max (Unifies t u)).Prop (eval sub) ->
res = Just (Evidence _ sub) ->
MguProof t u res
Failure :
Nothing (Unifies t u) ->
res = Nothing ->
MguProof t u res
export
mguProof : DecOp sig => {k : Nat} -> (t, u : Term sig k) -> MguProof t u (mgu t u)
mguProof t u with (amguProof t u [<])
_ | Success sub val prf = Success sub val prf
_ | Failure absurd prf = Failure absurd prf
|