diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-20 18:36:24 +0000 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-20 18:36:24 +0000 |
commit | 4e0ceac75e6d9940f0e11f93a3815448df258c70 (patch) | |
tree | 486f5f28796ca2f4996f4caeaf63095d1b4c876c | |
parent | 16afd9dff6798509a1d654b0f06e409353e01180 (diff) |
Separate Context into a different module.
-rw-r--r-- | src/Cfe/Context.agda | 10 | ||||
-rw-r--r-- | src/Cfe/Context/Base.agda | 123 | ||||
-rw-r--r-- | src/Cfe/Context/Properties.agda | 7 | ||||
-rw-r--r-- | src/Cfe/Judgement/Base.agda | 124 |
4 files changed, 145 insertions, 119 deletions
diff --git a/src/Cfe/Context.agda b/src/Cfe/Context.agda new file mode 100644 index 0000000..1c207f5 --- /dev/null +++ b/src/Cfe/Context.agda @@ -0,0 +1,10 @@ +{-# OPTIONS --without-K --safe #-} + +open import Relation.Binary using (Setoid) + +module Cfe.Context + {c ℓ} (over : Setoid c ℓ) + where + +open import Cfe.Context.Base over public +open import Cfe.Context.Properties over public diff --git a/src/Cfe/Context/Base.agda b/src/Cfe/Context/Base.agda new file mode 100644 index 0000000..dcd8056 --- /dev/null +++ b/src/Cfe/Context/Base.agda @@ -0,0 +1,123 @@ +{-# OPTIONS --without-K --safe #-} + +open import Relation.Binary using (Setoid) + +module Cfe.Context.Base + {c ℓ} (over : Setoid c ℓ) + where + +open import Cfe.Type over +open import Data.Empty +open import Data.Fin as F +open import Data.Fin.Properties hiding (≤-trans) +open import Data.Nat as ℕ hiding (_⊔_) +open import Data.Nat.Properties +open import Data.Vec +open import Level renaming (suc to lsuc) +open import Relation.Binary.PropositionalEquality +open import Relation.Nullary + +reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(toℕ i ≥ m) → Fin (n ∸ m) +reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i +reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m) + +private + insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → m ℕ.≤ n → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m) + insert′ {a} {A} {ℕ.zero} {n} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl) + insert′ {a} {A} {suc ℕ.zero} {suc _} xs _ _ F.zero x = x ∷ xs + insert′ {a} {A} {suc ℕ.zero} {suc (suc n)} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ {m = suc ℕ.zero} {suc n} xs (s≤s z≤n) (λ ()) i x + insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) m≤n) + insert′ {a} {A} {suc (suc m)} {suc (suc n)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x + + reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → .(i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j) + reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j + reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) i≥m i≤j = reduce≥′-mono (pred-mono m≤n) i j (pred-mono i≥m) (pred-mono i≤j) + + remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m) + remove′ (x ∷ xs) m≢0 F.zero = xs + remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i + + rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n + rotate F.zero j i≤j (x ∷ xs) = insert xs j x + rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs) + +record Context n : Set (c ⊔ lsuc ℓ) where + field + m : ℕ + m≤n : m ℕ.≤ n + Γ : Vec (Type ℓ ℓ) (n ∸ m) + Δ : Vec (Type ℓ ℓ) m + +wkn₁ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → .(toℕ i ≥ Context.m Γ,Δ) → Type ℓ ℓ → Context (suc n) +wkn₁ Γ,Δ i i≥m τ = record + { m≤n = ≤-step m≤n + ; Γ = subst (Vec (Type ℓ ℓ)) (sym (+-∸-assoc 1 m≤n)) (insert Γ (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) τ) + ; Δ = Δ + } + where + open Context Γ,Δ + +wkn₂ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) +wkn₂ Γ,Δ i i<m τ = record + { m≤n = s≤s m≤n + ; Γ = Γ + ; Δ = insert Δ (fromℕ< (s≤s i<m)) τ + } + where + open Context Γ,Δ + +rotate₁ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → toℕ i ≥ Context.m Γ,Δ → .(i F.≤ j) → Context n +rotate₁ {n} Γ,Δ i j i≥m i≤j = record + { m≤n = m≤n + ; Γ = rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) Γ + ; Δ = Δ + } + where + open Context Γ,Δ + +rotate₂ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ j ℕ.< Context.m Γ,Δ) → (i F.≤ j) → Context n +rotate₂ {n} Γ,Δ i j j<m i≤j = record + { m≤n = m≤n + ; Γ = Γ + ; Δ = rotate + (fromℕ< (≤-trans (s≤s i≤j) j<m)) + (fromℕ< j<m) + (begin + toℕ (fromℕ< (≤-trans (s≤s i≤j) j<m)) ≡⟨ toℕ-fromℕ< (≤-trans (s≤s i≤j) j<m) ⟩ + toℕ i ≤⟨ i≤j ⟩ + toℕ j ≡˘⟨ toℕ-fromℕ< j<m ⟩ + toℕ (fromℕ< j<m) ∎) + Δ + } + where + open Context Γ,Δ + open ≤-Reasoning + +transfer : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ i ℕ.< Context.m Γ,Δ) → (suc (toℕ j) ≥ Context.m Γ,Δ) → Context n +transfer {n} Γ,Δ i j i<m 1+j≥m with Context.m Γ,Δ ℕ.≟ 0 +... | yes m≡0 = ⊥-elim (m<n⇒n≢0 i<m m≡0) +... | no m≢0 = record + { m≤n = pred-mono (≤-step m≤n) + ; Γ = insert′ Γ m≤n m≢0 (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m)) (lookup Δ (fromℕ< i<m)) + ; Δ = remove′ Δ m≢0 (fromℕ< i<m) + } + where + open Context Γ,Δ + +cons : ∀ {n} → Type ℓ ℓ → Context n → Context (suc n) +cons {n} τ Γ,Δ = record + { m≤n = s≤s m≤n + ; Γ = Γ + ; Δ = τ ∷ Δ + } + where + open Context Γ,Δ + +shift : ∀ {n} → Context n → Context n +shift {n} Γ,Δ = record + { m≤n = z≤n + ; Γ = subst (Vec (Type ℓ ℓ)) (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (Δ ++ Γ) + ; Δ = [] + } + where + open Context Γ,Δ diff --git a/src/Cfe/Context/Properties.agda b/src/Cfe/Context/Properties.agda new file mode 100644 index 0000000..2acaf72 --- /dev/null +++ b/src/Cfe/Context/Properties.agda @@ -0,0 +1,7 @@ +{-# OPTIONS --without-K --safe #-} + +open import Relation.Binary using (Setoid) + +module Cfe.Context.Properties + {c ℓ} (over : Setoid c ℓ) + where diff --git a/src/Cfe/Judgement/Base.agda b/src/Cfe/Judgement/Base.agda index 4bb7b67..6b42598 100644 --- a/src/Cfe/Judgement/Base.agda +++ b/src/Cfe/Judgement/Base.agda @@ -6,128 +6,14 @@ module Cfe.Judgement.Base {c ℓ} (over : Setoid c ℓ) where -open import Cfe.Expression over hiding (rotate) +open import Cfe.Context over +open import Cfe.Expression over open import Cfe.Type over renaming (_∙_ to _∙ₜ_; _∨_ to _∨ₜ_) open import Cfe.Type.Construct.Lift over -open import Data.Empty using (⊥-elim) open import Data.Fin as F -open import Data.Fin.Properties hiding (≤-trans) -open import Data.Nat as ℕ hiding (_⊔_) -open import Data.Nat.Properties -open import Data.Product -open import Data.Vec hiding (_⊛_) renaming (lookup to lookup′) -open import Function +open import Data.Nat hiding (_⊔_) +open import Data.Vec hiding (_⊛_) open import Level hiding (Lift) renaming (suc to lsuc) -open import Relation.Binary.PropositionalEquality -open import Relation.Nullary - -private - insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → m ℕ.≤ n → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m) - insert′ {a} {A} {ℕ.zero} {n} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl) - insert′ {a} {A} {suc ℕ.zero} {suc _} xs _ _ F.zero x = x ∷ xs - insert′ {a} {A} {suc ℕ.zero} {suc (suc n)} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ {m = suc ℕ.zero} {suc n} xs (s≤s z≤n) (λ ()) i x - insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) m≤n) - insert′ {a} {A} {suc (suc m)} {suc (suc n)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x - - reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(toℕ i ≥ m) → Fin (n ∸ m) - reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i - reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m) - - reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → .(i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j) - reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j - reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) i≥m i≤j = reduce≥′-mono (pred-mono m≤n) i j (pred-mono i≥m) (pred-mono i≤j) - - remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m) - remove′ (x ∷ xs) m≢0 F.zero = xs - remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i - - rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n - rotate F.zero j i≤j (x ∷ xs) = insert xs j x - rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs) - -record Context n : Set (c ⊔ lsuc ℓ) where - field - m : ℕ - m≤n : m ℕ.≤ n - Γ : Vec (Type ℓ ℓ) (n ∸ m) - Δ : Vec (Type ℓ ℓ) m - - lookup : (i : Fin n) → toℕ i ≥ m → Type ℓ ℓ - lookup i i≥m = lookup′ Γ (reduce≥′ m≤n i i≥m) - -wkn₁ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ≥ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) -wkn₁ Γ,Δ i i≥m τ = record - { m≤n = ≤-step m≤n - ; Γ = subst (Vec (Type ℓ ℓ)) (sym (+-∸-assoc 1 m≤n)) (insert Γ (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) τ) - ; Δ = Δ - } - where - open Context Γ,Δ - -wkn₂ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) -wkn₂ Γ,Δ i i<m τ = record - { m≤n = s≤s m≤n - ; Γ = Γ - ; Δ = insert Δ (fromℕ< (s≤s i<m)) τ - } - where - open Context Γ,Δ - -rotate₁ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → toℕ i ≥ Context.m Γ,Δ → .(i F.≤ j) → Context n -rotate₁ {n} Γ,Δ i j i≥m i≤j = record - { m≤n = m≤n - ; Γ = rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) Γ - ; Δ = Δ - } - where - open Context Γ,Δ - -rotate₂ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ j ℕ.< Context.m Γ,Δ) → (i F.≤ j) → Context n -rotate₂ {n} Γ,Δ i j j<m i≤j = record - { m≤n = m≤n - ; Γ = Γ - ; Δ = rotate - (fromℕ< (≤-trans (s≤s i≤j) j<m)) - (fromℕ< j<m) - (begin - toℕ (fromℕ< (≤-trans (s≤s i≤j) j<m)) ≡⟨ toℕ-fromℕ< (≤-trans (s≤s i≤j) j<m) ⟩ - toℕ i ≤⟨ i≤j ⟩ - toℕ j ≡˘⟨ toℕ-fromℕ< j<m ⟩ - toℕ (fromℕ< j<m) ∎) - Δ - } - where - open Context Γ,Δ - open ≤-Reasoning - -transfer : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ i ℕ.< Context.m Γ,Δ) → (suc (toℕ j) ≥ Context.m Γ,Δ) → Context n -transfer {n} Γ,Δ i j i<m 1+j≥m with Context.m Γ,Δ ℕ.≟ 0 -... | yes m≡0 = ⊥-elim (m<n⇒n≢0 i<m m≡0) -... | no m≢0 = record - { m≤n = pred-mono (≤-step m≤n) - ; Γ = insert′ Γ m≤n m≢0 (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m)) (lookup′ Δ (fromℕ< i<m)) - ; Δ = remove′ Δ m≢0 (fromℕ< i<m) - } - where - open Context Γ,Δ - -cons : ∀ {n} → Type ℓ ℓ → Context n → Context (suc n) -cons {n} τ Γ,Δ = record - { m≤n = s≤s m≤n - ; Γ = Γ - ; Δ = τ ∷ Δ - } - where - open Context Γ,Δ - -shift : ∀ {n} → Context n → Context n -shift {n} Γ,Δ = record - { m≤n = z≤n - ; Γ = subst (Vec (Type ℓ ℓ)) (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (Δ ++ Γ) - ; Δ = [] - } - where - open Context Γ,Δ infix 2 _⊢_∶_ @@ -135,7 +21,7 @@ data _⊢_∶_ : {n : ℕ} → Context n → Expression n → Type ℓ ℓ → S Eps : ∀ {n} {Γ,Δ : Context n} → Γ,Δ ⊢ ε ∶ Lift ℓ ℓ τε Char : ∀ {n} {Γ,Δ : Context n} c → Γ,Δ ⊢ Char c ∶ Lift ℓ ℓ τ[ c ] Bot : ∀ {n} {Γ,Δ : Context n} → Γ,Δ ⊢ ⊥ ∶ Lift ℓ ℓ τ⊥ - Var : ∀ {n} {Γ,Δ : Context n} {i : Fin n} (i≥m : toℕ i ℕ.≥ Context.m Γ,Δ) → Γ,Δ ⊢ Var i ∶ Context.lookup Γ,Δ i i≥m + Var : ∀ {n} {Γ,Δ : Context n} {i} (i≥m : toℕ i ≥ _) → Γ,Δ ⊢ Var i ∶ lookup (Context.Γ Γ,Δ) (reduce≥′ (Context.m≤n Γ,Δ) i i≥m) Fix : ∀ {n} {Γ,Δ : Context n} {e τ} → cons τ Γ,Δ ⊢ e ∶ τ → Γ,Δ ⊢ μ e ∶ τ Cat : ∀ {n} {Γ,Δ : Context n} {e₁ e₂ τ₁ τ₂} → Γ,Δ ⊢ e₁ ∶ τ₁ → shift Γ,Δ ⊢ e₂ ∶ τ₂ → (τ₁⊛τ₂ : τ₁ ⊛ τ₂) → Γ,Δ ⊢ e₁ ∙ e₂ ∶ τ₁ ∙ₜ τ₂ Vee : ∀ {n} {Γ,Δ : Context n} {e₁ e₂ τ₁ τ₂} → Γ,Δ ⊢ e₁ ∶ τ₁ → Γ,Δ ⊢ e₂ ∶ τ₂ → (τ₁#τ₂ : τ₁ # τ₂) → Γ,Δ ⊢ e₁ ∨ e₂ ∶ τ₁ ∨ₜ τ₂ |