diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-22 16:43:49 +0000 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-22 16:43:49 +0000 |
commit | 9e89f36e3fc6210b270d673c30691530015278fb (patch) | |
tree | b99e51012d555043032c632a42bc6d4b3636c718 | |
parent | 9c72c8ed0c3e10b5dafb41e438285b08f244ba68 (diff) |
Prove transfer.
-rw-r--r-- | src/Cfe/Context/Base.agda | 49 | ||||
-rw-r--r-- | src/Cfe/Context/Properties.agda | 57 | ||||
-rw-r--r-- | src/Cfe/Judgement/Properties.agda | 98 |
3 files changed, 179 insertions, 25 deletions
diff --git a/src/Cfe/Context/Base.agda b/src/Cfe/Context/Base.agda index 6b7a9dc..1a37aa0 100644 --- a/src/Cfe/Context/Base.agda +++ b/src/Cfe/Context/Base.agda @@ -11,40 +11,43 @@ open import Data.Empty open import Data.Fin as F hiding (cast) open import Data.Fin.Properties hiding (≤-trans) open import Data.Nat as ℕ hiding (_⊔_) -open import Data.Nat.Properties +open import Data.Nat.Properties as NP open import Data.Product open import Data.Vec open import Level renaming (suc to lsuc) open import Relation.Binary.PropositionalEquality open import Relation.Nullary +≤-recomputable : ∀ {m n} → .(m ℕ.≤ n) → m ℕ.≤ n +≤-recomputable {ℕ.zero} {n} m≤n = z≤n +≤-recomputable {suc m} {suc n} m≤n = s≤s (≤-recomputable (pred-mono m≤n)) + cast : ∀ {a A m n} → .(m ≡ n) → Vec {a} A m → Vec {a} A n cast {m = 0} {0} eq [] = [] cast {m = suc _} {suc n} eq (x ∷ xs) = x ∷ cast (cong ℕ.pred eq) xs -reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → toℕ i ≥ m → Fin (n ∸ m) +reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(_ : toℕ i ≥ m) → Fin (n ∸ m) reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i -reduce≥′ {suc m} {suc n} m≤n (suc i) (s≤s i≥m) = reduce≥′ (pred-mono m≤n) i i≥m - -private - insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → m ℕ.≤ n → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m) - insert′ {a} {A} {ℕ.zero} {n} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl) - insert′ {a} {A} {suc ℕ.zero} {suc _} xs _ _ F.zero x = x ∷ xs - insert′ {a} {A} {suc ℕ.zero} {suc (suc n)} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ {m = suc ℕ.zero} {suc n} xs (s≤s z≤n) (λ ()) i x - insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) m≤n) - insert′ {a} {A} {suc (suc m)} {suc (suc n)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x - - reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → (i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j) - reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j - reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = reduce≥′-mono (pred-mono m≤n) i j i≥m i≤j - - remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m) - remove′ (x ∷ xs) m≢0 F.zero = xs - remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i - - rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n - rotate F.zero j i≤j (x ∷ xs) = insert xs j x - rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs) +reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m) + +reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → (i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j) +reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j +reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = reduce≥′-mono (pred-mono m≤n) i j i≥m i≤j + +insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → .(m ℕ.≤ n) → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m) +insert′ {a} {A} {ℕ.zero} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl) +insert′ {a} {A} {suc ℕ.zero} xs _ _ F.zero x = x ∷ xs +insert′ {a} {A} {suc ℕ.zero} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ xs (s≤s z≤n) (λ ()) i x +insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable m≤n)) +insert′ {a} {A} {suc (suc m)} {suc (suc _)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x + +rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n +rotate F.zero j i≤j (x ∷ xs) = insert xs j x +rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs) + +remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m) +remove′ (x ∷ xs) m≢0 F.zero = xs +remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i record Context n : Set (c ⊔ lsuc ℓ) where field diff --git a/src/Cfe/Context/Properties.agda b/src/Cfe/Context/Properties.agda index 2761fae..230c18b 100644 --- a/src/Cfe/Context/Properties.agda +++ b/src/Cfe/Context/Properties.agda @@ -8,6 +8,7 @@ module Cfe.Context.Properties open import Cfe.Context.Base over as C open import Cfe.Type over +open import Data.Empty open import Data.Fin as F open import Data.Nat as ℕ open import Data.Nat.Properties @@ -23,6 +24,11 @@ cast-involutive : ∀ {a A k m n} .(k≡m : k ≡ m) .(m≡n : m ≡ n) .(k≡n cast-involutive {k = zero} {zero} {zero} k≡m m≡n k≡n [] = refl cast-involutive {k = suc _} {suc _} {suc _} k≡m m≡n k≡n (x ∷ xs) = cong (x ∷_) (cast-involutive (cong ℕ.pred k≡m) (cong ℕ.pred m≡n) (cong ℕ.pred k≡n) xs) +cast-insert : ∀ {a A m n} xs .(m≡n : _) i j .(_ : toℕ i ≡ toℕ j) y → C.cast {a} {A} {suc m} {suc n} (cong suc m≡n) (insert xs i y) ≡ insert (C.cast m≡n xs) j y +cast-insert [] m≡n zero zero _ y = refl +cast-insert (x ∷ xs) m≡n zero zero _ y = refl +cast-insert {m = suc _} {n = suc _} (x ∷ xs) m≡n (suc i) (suc j) i≡j y = cong (x ∷_) (cast-insert xs (cong ℕ.pred m≡n) i j (cong ℕ.pred i≡j) y) + wkn₁-shift : ∀ {n} (Γ,Δ : Context n) i i≥m τ → shift (wkn₁ Γ,Δ i i≥m τ) ≋ wkn₁ (shift Γ,Δ) i z≤n τ wkn₁-shift record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i i≥m τ = refl , @@ -62,3 +68,54 @@ wkn₂-shift record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i i≤m τ = (trans (sym (+-∸-assoc m (pred-mono m≤n))) (m+n∸m≡n m n)) (xs ++ ys))) eq {m = suc m} {suc n} (x ∷ xs) ys m≤n (suc i) (s≤s i≤m) y = cong (x ∷_) (eq xs ys (pred-mono m≤n) i i≤m y) + +rotate₁-shift : ∀ {n} (Γ,Δ : Context n) i j i≥m i≤j → rotate₁ (shift Γ,Δ) i j z≤n i≤j ≋ shift (rotate₁ Γ,Δ i j i≥m i≤j) +rotate₁-shift record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i j i≥m i≤j = + refl , + eq Γ Δ m≤n i j i≥m i≤j , + refl + where + eq : ∀ {a A m n} xs ys .(m≤n : m ℕ.≤ n) i j i≥m i≤j → + rotate {a} {A} i j i≤j (C.cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (ys ++ xs)) ≡ + C.cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (ys ++ rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) xs) + eq {m = zero} {suc _} (x ∷ xs) [] _ zero j _ _ = sym (cast-insert xs refl j j refl x) + eq {m = zero} (x ∷ xs) [] _ (suc i) (suc j) _ i≤j = cong (x ∷_) (eq xs [] z≤n i j z≤n (pred-mono i≤j)) + eq {m = suc _} {suc _} xs (y ∷ ys) m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = cong (y ∷_) (eq xs ys (pred-mono m≤n) i j i≥m i≤j) + +transfer-cons : ∀ {n} (Γ,Δ : Context n) i j i<m 1+j≥m τ → transfer (cons Γ,Δ τ) (suc i) (suc j) (s≤s i<m) (s≤s 1+j≥m) ≋ cons (transfer Γ,Δ i j i<m 1+j≥m) τ +transfer-cons record { m = suc m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i j i<m 1+j≥m τ = + refl , eq₁ Γ Δ m≤n (fromℕ< i<m) j 1+j≥m τ , eq₂ Δ (fromℕ< i<m) τ + where + eq₁ : ∀ {a A m n} xs ys .(m≤n : suc m ℕ.≤ n) (i : Fin (suc m)) j .(1+j≥m : _) y → + insert′ {a} {A} xs (s≤s m≤n) (λ ()) (reduce≥′ (≤-step m≤n) (suc j) 1+j≥m) (lookup (y ∷ ys) (suc i)) ≡ + insert′ xs m≤n (λ ()) (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m)) (lookup ys i) + eq₁ {m = zero} {suc _} xs ys m≤n i j 1+j≥m y = refl + eq₁ {m = suc m} xs ys m≤n i zero 1+j≥m x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable 1+j≥m)) + eq₁ {m = suc m} {suc _} xs (x ∷ ys) m≤n i (suc j) 1+j≥m y = refl + + eq₂ : ∀ {a A m} ys (i : Fin (suc m)) y → + remove′ {a} {A} (y ∷ ys) (λ ()) (suc i) ≡ y ∷ remove′ ys (λ ()) i + eq₂ (x ∷ ys) i y = refl + +transfer-shift : ∀ {n} (Γ,Δ : Context n) i j i<m 1+j≥m → rotate₁ (shift Γ,Δ) i j z≤n (pred-mono (≤-trans i<m 1+j≥m)) ≋ shift (transfer Γ,Δ i j i<m 1+j≥m) +transfer-shift record { m = suc m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i j i<m 1+j≥m = + refl , + eq Γ Δ m≤n i j i<m 1+j≥m , + refl + where + eq : ∀ {a A m n} xs ys .(m≤n : suc m ℕ.≤ n) i j i<m .(1+j≥m : _) → + rotate {a} {A} i j + (pred-mono {_} {suc (toℕ j)} (≤-trans i<m 1+j≥m)) + (C.cast (trans (sym (+-∸-assoc (suc m) m≤n)) (m+n∸m≡n (suc m) n)) (ys ++ xs)) ≡ + C.cast + (trans (sym (+-∸-assoc m (pred-mono (≤-step m≤n)))) (m+n∸m≡n (suc m) n)) + ( remove′ ys (λ ()) (fromℕ< i<m) ++ + insert′ xs m≤n (λ ()) + (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m)) + (lookup ys (fromℕ< i<m))) + eq {m = zero} {suc _} xs (y ∷ []) m≤n zero zero i<m 1+j≥m = refl + eq {m = zero} {suc (suc _)} (x ∷ xs) (y ∷ []) _ zero (suc j) _ _ = cong (x ∷_) (eq xs (y ∷ []) (s≤s z≤n) zero j (s≤s z≤n) (s≤s z≤n)) + eq {m = zero} {suc _} _ (_ ∷ []) _ (suc _) _ (s≤s ()) _ + eq {m = suc _} {suc _} _ (_ ∷ _) _ _ zero _ 1+j≥m = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable 1+j≥m)) + eq {m = suc _} {suc (suc _)} xs (x ∷ y ∷ ys) m≤n zero (suc j) i<m 1+j≥m = cong (y ∷_) (eq xs (x ∷ ys) (pred-mono m≤n) zero j (s≤s z≤n) (pred-mono 1+j≥m)) + eq {m = suc _} {suc (suc _)} xs (x ∷ y ∷ ys) m≤n (suc i) (suc j) (s≤s i<m) 1+j≥m = cong (x ∷_) (eq xs (y ∷ ys) (pred-mono m≤n) i j i<m (pred-mono 1+j≥m)) diff --git a/src/Cfe/Judgement/Properties.agda b/src/Cfe/Judgement/Properties.agda index 7f357f0..053ab73 100644 --- a/src/Cfe/Judgement/Properties.agda +++ b/src/Cfe/Judgement/Properties.agda @@ -6,15 +6,28 @@ module Cfe.Judgement.Properties {c ℓ} (over : Setoid c ℓ) where -open import Cfe.Context over renaming (wkn₁ to cwkn₁; wkn₂ to cwkn₂; _≋_ to _≋ᶜ_) +open import Cfe.Context over + renaming + ( wkn₁ to cwkn₁ + ; wkn₂ to cwkn₂ + ; rotate to crotate + ; rotate₁ to crotate₁ + ; transfer to ctransfer + ; _≋_ to _≋ᶜ_ + ) open import Cfe.Expression over open import Cfe.Judgement.Base over -open import Data.Fin +open import Data.Empty +open import Data.Fin as F +open import Data.Fin.Properties hiding (≤-refl; ≤-trans; ≤-irrelevant) open import Data.Nat as ℕ open import Data.Nat.Properties open import Data.Product open import Data.Vec +open import Data.Vec.Properties +open import Function open import Relation.Binary.PropositionalEquality +open import Relation.Nullary toℕ-punchIn : ∀ {n} i j → toℕ j ℕ.≤ toℕ (punchIn {n} i j) toℕ-punchIn zero j = n≤1+n (toℕ j) @@ -65,3 +78,84 @@ wkn₂ {Γ,Δ = Γ,Δ} (Var {i = j} j≥m) i τ′ i≤m = wkn₂ (Fix Γ,Δ⊢e∶τ) i τ′ i≤m = Fix (wkn₂ Γ,Δ⊢e∶τ (suc i) τ′ (s≤s i≤m)) wkn₂ {Γ,Δ = Γ,Δ} (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) i τ′ i≤m = Cat (wkn₂ Γ,Δ⊢e₁∶τ₁ i τ′ i≤m) (congᶜ (≋-sym (wkn₂-shift Γ,Δ i i≤m τ′)) (wkn₁ Δ++Γ,∙⊢e₂∶τ₂ i τ′ z≤n)) τ₁⊛τ₂ wkn₂ (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) i τ′ i≤m = Vee (wkn₂ Γ,Δ⊢e₁∶τ₁ i τ′ i≤m) (wkn₂ Γ,Δ⊢e₂∶τ₂ i τ′ i≤m) τ₁#τ₂ + +rotate₁ : ∀ {n} {Γ,Δ : Context n} {e τ} → Γ,Δ ⊢ e ∶ τ → ∀ i j i≥m i≤j → crotate₁ Γ,Δ i j i≥m i≤j ⊢ rotate e i j i≤j ∶ τ +rotate₁ Eps i j i≥m i≤j = Eps +rotate₁ (Char c) i j i≥m i≤j = Char c +rotate₁ Bot i j i≥m i≤j = Bot +rotate₁ {suc n} {Γ,Δ = record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ }} (Var {i = k} k≥m) i j i≥m i≤j with i F.≟ k +... | yes refl = congᵗ (τ≡τ′ Γ m≤n i j i≥m i≤j) (Var (≤-trans i≥m i≤j)) + where + τ≡τ′ : ∀ {a A m n} xs m≤n i j i≥m i≤j → lookup {a} {A} (crotate (reduce≥′ {m} {n} m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) xs) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) ≡ lookup xs (reduce≥′ m≤n i i≥m) + τ≡τ′ {m = zero} (x ∷ xs) m≤n zero j i≥m i≤j = insert-lookup xs j x + τ≡τ′ {m = zero} (x ∷ xs) m≤n (suc i) (suc j) i≥m i≤j = τ≡τ′ xs z≤n i j z≤n (pred-mono i≤j) + τ≡τ′ {m = suc m} {suc n} xs m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = τ≡τ′ xs (pred-mono m≤n) i j i≥m i≤j +... | no i≢k = congᵗ (τ≡τ′ Γ m≤n i j k i≢k i≥m i≤j k≥m) (Var (punchIn-punchOut≥m i j k i≢k i≥m i≤j k≥m)) + where + punchIn-punchOut≥m : ∀ {m n} (i j k : Fin (suc n)) (i≢k : i ≢ k) → toℕ i ≥ m → i F.≤ j → toℕ k ≥ m → toℕ (punchIn j (punchOut i≢k)) ≥ m + punchIn-punchOut≥m {zero} _ _ _ _ _ _ _ = z≤n + punchIn-punchOut≥m {suc _} zero _ zero i≢k _ _ _ = ⊥-elim (i≢k refl) + punchIn-punchOut≥m {suc _} zero zero (suc _) _ _ _ k≥m = k≥m + punchIn-punchOut≥m {suc _} {suc _} (suc i) (suc j) (suc k) i≢k (s≤s i≥m) (s≤s i≤j) (s≤s k≥m) = s≤s (punchIn-punchOut≥m i j k (i≢k ∘ cong suc) i≥m i≤j k≥m) + + τ≡τ′ : ∀ {a A m n} xs m≤n i j k i≢k i≥m i≤j k≥m → + lookup {a} {A} + (crotate + (reduce≥′ {m} {suc n} m≤n i i≥m) + (reduce≥′ m≤n j (≤-trans i≥m i≤j)) + (reduce≥′-mono m≤n i j i≥m i≤j) xs) + (reduce≥′ + m≤n + (punchIn j (punchOut i≢k)) + (punchIn-punchOut≥m i j k i≢k i≥m i≤j k≥m)) ≡ + lookup xs (reduce≥′ m≤n k k≥m) + τ≡τ′ {m = zero} _ _ zero _ zero i≢k _ _ _ = ⊥-elim (i≢k refl) + τ≡τ′ {m = zero} (_ ∷ _) _ zero zero (suc _) _ _ _ _ = refl + τ≡τ′ {m = zero} (_ ∷ _ ∷ _) _ zero (suc _) (suc zero) _ _ _ _ = refl + τ≡τ′ {m = zero} (x ∷ _ ∷ xs) _ zero (suc j) (suc (suc k)) _ _ _ _ = τ≡τ′ (x ∷ xs) z≤n zero j (suc k) (λ ()) z≤n z≤n z≤n + τ≡τ′ {m = zero} (_ ∷ _ ∷ _) _ (suc _) (suc _) zero _ _ _ _ = refl + τ≡τ′ {m = zero} (_ ∷ x ∷ xs) _ (suc i) (suc j) (suc k) i≢k _ i≤j _ = τ≡τ′ (x ∷ xs) z≤n i j k (i≢k ∘ cong suc) z≤n (pred-mono i≤j) z≤n + τ≡τ′ {m = suc m} {suc _} xs m≤n (suc i) (suc j) (suc k) i≢k i≥m i≤j k≥m = τ≡τ′ xs (pred-mono m≤n) i j k (i≢k ∘ cong suc) (pred-mono i≥m) (pred-mono i≤j) (pred-mono k≥m) +rotate₁ (Fix Γ,Δ⊢e∶τ) i j i≥m i≤j = Fix (rotate₁ Γ,Δ⊢e∶τ (suc i) (suc j) (s≤s i≥m) (s≤s i≤j)) +rotate₁ {Γ,Δ = Γ,Δ} (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) i j i≥m i≤j = Cat (rotate₁ Γ,Δ⊢e₁∶τ₁ i j i≥m i≤j) (congᶜ (rotate₁-shift Γ,Δ i j i≥m i≤j) (rotate₁ Δ++Γ,∙⊢e₂∶τ₂ i j z≤n i≤j)) τ₁⊛τ₂ +rotate₁ (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) i j i≥m i≤j = Vee (rotate₁ Γ,Δ⊢e₁∶τ₁ i j i≥m i≤j) (rotate₁ Γ,Δ⊢e₂∶τ₂ i j i≥m i≤j) τ₁#τ₂ + +transfer : ∀ {n} {Γ,Δ : Context n} {e τ} → Γ,Δ ⊢ e ∶ τ → ∀ i j i<m 1+j≥m → ctransfer Γ,Δ i j i<m 1+j≥m ⊢ rotate e i j (pred-mono (≤-trans i<m 1+j≥m)) ∶ τ +transfer Eps i j i<m 1+j≥m = Eps +transfer (Char c) i j i<m 1+j≥m = Char c +transfer Bot i j i<m 1+j≥m = Bot +transfer {suc n} {Γ,Δ = record { m = suc m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ }} (Var {i = k} k≥m) i j i<m 1+j≥m with suc m ℕ.≟ 0 | i F.≟ k +... | no m≢0 | yes refl = ⊥-elim (<⇒≱ i<m k≥m) +... | no m≢0 | no i≢k = congᵗ (τ≡τ′ Γ (lookup Δ (fromℕ< i<m)) m≢0 m≤n i j k i<m 1+j≥m k≥m i≢k) (Var (punchIn≥m i j k i≢k i<m 1+j≥m k≥m)) + where + punchIn≥m : ∀ {m n} (i j k : Fin (suc n)) (i≢k : i ≢ k) → toℕ i ℕ.< m → .(suc (toℕ j) ≥ m) → toℕ k ≥ m → toℕ (punchIn j (punchOut i≢k)) ≥ ℕ.pred m + punchIn≥m {suc zero} _ _ _ _ _ _ _ = z≤n + punchIn≥m {suc (suc _)} zero _ zero i≢k _ _ _ = ⊥-elim (i≢k refl) + punchIn≥m {suc (suc _)} zero zero (suc _) _ _ _ (s≤s k≥m) = ≤-step k≥m + punchIn≥m {suc (suc _)} {suc _} (suc i) zero (suc k) i≢k (s≤s i<m) 1+j≥m (s≤s k≥m) = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable 1+j≥m)) + punchIn≥m {suc (suc _)} zero (suc _) (suc zero) _ _ _ (s≤s k≥m) = k≥m + punchIn≥m {suc (suc _)} zero (suc j) (suc (suc k)) _ _ 1+j≥m (s≤s k≥m) = s≤s (punchIn≥m zero j (suc k) (λ ()) (s≤s z≤n) (pred-mono 1+j≥m) k≥m) + punchIn≥m {suc (suc _)} {suc _} (suc i) (suc j) (suc k) i≢k (s≤s i<m) 1+j≥m (s≤s k≥m) = s≤s (punchIn≥m i j k (i≢k ∘ cong suc) i<m (pred-mono 1+j≥m) k≥m) + + τ≡τ′ : ∀ {a A m n} xs y m≢0 .(m≤n : _) i j k i<m .(1+j≥m : _) k≥m i≢k → + lookup + (insert′ {a} {A} {m} {suc n} xs m≤n m≢0 + (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m)) + y) + (reduce≥′ + (pred-mono (≤-step m≤n)) + (punchIn j (punchOut i≢k)) + (punchIn≥m i j k i≢k i<m 1+j≥m k≥m)) ≡ + lookup xs (reduce≥′ m≤n k k≥m) + τ≡τ′ {m = suc zero} _ _ _ _ zero zero (suc _) _ _ (s≤s z≤n) _ = refl + τ≡τ′ {m = suc zero} _ _ _ _ (suc _) zero (suc _) (s≤s ()) _ _ _ + τ≡τ′ {m = suc zero} (_ ∷ _) _ _ _ zero (suc _) (suc zero) _ _ (s≤s z≤n) _ = refl + τ≡τ′ {m = suc zero} (_ ∷ xs) y _ _ zero (suc j) (suc (suc k)) _ _ (s≤s z≤n) _ = τ≡τ′ xs y (λ ()) (s≤s (z≤n)) zero j (suc k) (s≤s z≤n) (s≤s z≤n) (s≤s z≤n) (λ ()) + τ≡τ′ {m = suc (suc _)} _ _ _ _ _ zero _ _ 1+j≥m _ _ = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable 1+j≥m)) + τ≡τ′ {m = suc (suc _)} _ _ _ _ zero _ (suc zero) _ _ (s≤s ()) _ + τ≡τ′ {m = suc (suc _)} {suc (suc _)} xs y _ m≤n zero (suc j) (suc (suc k)) _ 1+j≥m (s≤s k≥m) _ = τ≡τ′ xs y (λ ()) (pred-mono m≤n) zero j (suc k) (s≤s z≤n) (pred-mono 1+j≥m) k≥m (λ ()) + τ≡τ′ {m = suc (suc m)} xs y m≢0 m≤n (suc i) (suc j) (suc zero) (s≤s i<m) 1+j≥m (s≤s k≥m) i≢k = τ≡τ′ xs y (λ ()) (pred-mono m≤n) i j zero i<m (pred-mono 1+j≥m) k≥m (i≢k ∘ cong suc) + τ≡τ′ {m = suc (suc m)} xs y m≢0 m≤n (suc i) (suc j) (suc (suc k)) (s≤s i<m) 1+j≥m (s≤s k≥m) i≢k = τ≡τ′ xs y (λ ()) (pred-mono m≤n) i j (suc k) i<m (pred-mono 1+j≥m) k≥m (i≢k ∘ cong suc) +transfer {Γ,Δ = Γ,Δ} {τ = τ} (Fix Γ,Δ⊢e∶τ) i j i<m 1+j≥m = Fix (congᶜ (transfer-cons Γ,Δ i j i<m 1+j≥m τ) (transfer Γ,Δ⊢e∶τ (suc i) (suc j) (s≤s i<m) (s≤s 1+j≥m))) +transfer {Γ,Δ = Γ,Δ} (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) i j i<m 1+j≥m = Cat (transfer Γ,Δ⊢e₁∶τ₁ i j i<m 1+j≥m) (congᶜ (transfer-shift Γ,Δ i j i<m 1+j≥m) (rotate₁ Δ++Γ,∙⊢e₂∶τ₂ i j z≤n (pred-mono (≤-trans i<m 1+j≥m)))) τ₁⊛τ₂ +transfer (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) i j i<m 1+j≥m = Vee (transfer Γ,Δ⊢e₁∶τ₁ i j i<m 1+j≥m) (transfer Γ,Δ⊢e₂∶τ₂ i j i<m 1+j≥m) τ₁#τ₂ |