diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-27 13:10:40 +0000 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-27 13:10:40 +0000 |
commit | a062b83551010213825e41a7acb0221a6c74e6af (patch) | |
tree | 9599d2ff8c9137801160b659e742defec6665123 | |
parent | ba7e3b5d9c868af4b5dd7c3af72c48a1dd27cc31 (diff) |
Prove satisfaction for concatenation.lemma3.5
-rw-r--r-- | src/Cfe/Language/Base.agda | 2 | ||||
-rw-r--r-- | src/Cfe/Language/Construct/Concatenate.agda | 229 | ||||
-rw-r--r-- | src/Cfe/Type/Base.agda | 5 | ||||
-rw-r--r-- | src/Cfe/Type/Properties.agda | 73 |
4 files changed, 220 insertions, 89 deletions
diff --git a/src/Cfe/Language/Base.agda b/src/Cfe/Language/Base.agda index 3e954b2..a3b5136 100644 --- a/src/Cfe/Language/Base.agda +++ b/src/Cfe/Language/Base.agda @@ -20,6 +20,8 @@ open import Relation.Binary.PropositionalEquality infix 4 _∈_ infix 4 _∉_ +infix 4 _≈_ +infix 4 _≤_ record Language a : Set (c ⊔ ℓ ⊔ suc a) where field diff --git a/src/Cfe/Language/Construct/Concatenate.agda b/src/Cfe/Language/Construct/Concatenate.agda index 8dff2ff..c4a5670 100644 --- a/src/Cfe/Language/Construct/Concatenate.agda +++ b/src/Cfe/Language/Construct/Concatenate.agda @@ -16,83 +16,15 @@ open import Data.Product as Product open import Data.Unit using (⊤) open import Function open import Level -open import Relation.Binary.PropositionalEquality as ≡ +import Relation.Binary.PropositionalEquality as ≡ open import Relation.Nullary open import Relation.Unary hiding (_∈_) import Relation.Binary.Indexed.Heterogeneous as I open Setoid over using () renaming (Carrier to C; _≈_ to _∼_; refl to ∼-refl; sym to ∼-sym; trans to ∼-trans) -module _ - {a b} - (A : Language a) - (B : Language b) - where - - private - module A = Language A - module B = Language B - - infix 7 _∙_ - - Concat : List C → Set (c ⊔ ℓ ⊔ a ⊔ b) - Concat l = ∃[ l₁ ] l₁ ∈ A × ∃[ l₂ ] l₂ ∈ B × l₁ ++ l₂ ≋ l - - _∙_ : Language (c ⊔ ℓ ⊔ a ⊔ b) - _∙_ = record - { 𝕃 = Concat - ; ∈-resp-≋ = λ { l≋l′ (_ , l₁∈A , _ , l₂∈B , eq) → -, l₁∈A , -, l₂∈B , ≋-trans eq l≋l′ - } - } - -isMonoid : ∀ {a} → IsMonoid 𝕃._≈_ _∙_ (𝕃.Lift (ℓ ⊔ a) {ε}) -isMonoid {a} = record - { isSemigroup = record - { isMagma = record - { isEquivalence = ≈-isEquivalence - ; ∙-cong = λ X≈Y U≈V → record - { f = λ { (_ , l₁∈X , _ , l₂∈U , eq) → -, _≈_.f X≈Y l₁∈X , -, _≈_.f U≈V l₂∈U , eq } - ; f⁻¹ = λ { (_ , l₁∈Y , _ , l₂∈V , eq) → -, _≈_.f⁻¹ X≈Y l₁∈Y , -, _≈_.f⁻¹ U≈V l₂∈V , eq } - } - } - ; assoc = λ X Y Z → record - { f = λ {l} → λ { (l₁₂ , (l₁ , l₁∈X , l₂ , l₂∈Y , eq₁) , l₃ , l₃∈Z , eq₂) → - -, l₁∈X , -, (-, l₂∈Y , -, l₃∈Z , ≋-refl) , (begin - l₁ ++ l₂ ++ l₃ ≡˘⟨ ++-assoc l₁ l₂ l₃ ⟩ - (l₁ ++ l₂) ++ l₃ ≈⟨ ++⁺ eq₁ ≋-refl ⟩ - l₁₂ ++ l₃ ≈⟨ eq₂ ⟩ - l ∎) } - ; f⁻¹ = λ {l} → λ { (l₁ , l₁∈X , l₂₃ , (l₂ , l₂∈Y , l₃ , l₃∈Z , eq₁) , eq₂) → - -, (-, l₁∈X , -, l₂∈Y , ≋-refl) , -, l₃∈Z , (begin - (l₁ ++ l₂) ++ l₃ ≡⟨ ++-assoc l₁ l₂ l₃ ⟩ - l₁ ++ l₂ ++ l₃ ≈⟨ ++⁺ ≋-refl eq₁ ⟩ - l₁ ++ l₂₃ ≈⟨ eq₂ ⟩ - l ∎) } - } - } - ; identity = (λ X → record - { f = λ { ([] , _ , _ , l₂∈X , eq) → Language.∈-resp-≋ X eq l₂∈X } - ; f⁻¹ = λ l∈X → -, lift refl , -, l∈X , ≋-refl - }) , (λ X → record - { f = λ { (l₁ , l₁∈X , [] , _ , eq) → Language.∈-resp-≋ X (≋-trans (≋-reflexive (sym (++-identityʳ l₁))) eq) l₁∈X } - ; f⁻¹ = λ {l} l∈X → -, l∈X , -, lift refl , ≋-reflexive (++-identityʳ l) - }) - } - where - open import Relation.Binary.Reasoning.Setoid ≋-setoid - -∙-mono : ∀ {a b} → _∙_ Preserves₂ _≤_ {a} ⟶ _≤_ {b} ⟶ _≤_ -∙-mono X≤Y U≤V = record - { f = λ {(_ , l₁∈X , _ , l₂∈U , eq) → -, X≤Y.f l₁∈X , -, U≤V.f l₂∈U , eq} - } - where - module X≤Y = _≤_ X≤Y - module U≤V = _≤_ U≤V - -private +module Compare where data Compare : List C → List C → List C → List C → Set (c ⊔ ℓ) where - -- left : ∀ {ws₁ w ws₂ xs ys z zs₁ zs₂} → (ws₁≋ys : ws₁ ≋ ys) → (w∼z : w ∼ z) → (ws₂≋zs₁ : ws₂ ≋ zs₁) → (xs≋zs₂ : xs ≋ zs₂) → Compare (ws₁ ++ w ∷ ws₂) xs ys (z ∷ zs₁ ++ zs₂) - -- right : ∀ {ws x xs₁ xs₂ ys₁ y ys₂ zs} → (ws≋ys₁ : ws ≋ ys₁) → (x∼y : x ∼ y) → (xs₁≋ys₂ : xs₁ ≋ ys₂) → (xs₂≋zs : xs₂ ≋ zs) → Compare ws (x ∷ xs₁ ++ xs₂) (ys₁ ++ y ∷ ys₂) zs back : ∀ {xs zs} → (xs≋zs : xs ≋ zs) → Compare [] xs [] zs left : ∀ {w ws xs z zs} → Compare ws xs [] zs → (w∼z : w ∼ z) → Compare (w ∷ ws) xs [] (z ∷ zs) right : ∀ {x xs y ys zs} → Compare [] xs ys zs → (x∼y : x ∼ y) → Compare [] (x ∷ xs) (y ∷ ys) zs @@ -142,29 +74,160 @@ private right-split (front cmp w∼y) r with right-split cmp r ... | (_ , _ , eq₁ , eq₂) = -, -, w∼y ∷ eq₁ , eq₂ - eq-split : ∀ {ws xs ys zs} → (cmp : Compare ws xs ys zs) → isEqual cmp → ws ≋ ys - eq-split (back xs≋zs) e = [] - eq-split (front cmp w∼y) e = w∼y ∷ eq-split cmp e + eq-split : ∀ {ws xs ys zs} → (cmp : Compare ws xs ys zs) → isEqual cmp → ws ≋ ys × xs ≋ zs + eq-split (back xs≋zs) e = [] , xs≋zs + eq-split (front cmp w∼y) e = map₁ (w∼y ∷_) (eq-split cmp e) + +module _ + {a b} + (A : Language a) + (B : Language b) + where + + private + module A = Language A + module B = Language B + + infix 7 _∙_ + + record Concat (l : List C) : Set (c ⊔ ℓ ⊔ a ⊔ b) where + field + l₁ : List C + l₂ : List C + l₁∈A : l₁ ∈ A + l₂∈B : l₂ ∈ B + eq : l₁ ++ l₂ ≋ l + + _∙_ : Language (c ⊔ ℓ ⊔ a ⊔ b) + _∙_ = record + { 𝕃 = Concat + ; ∈-resp-≋ = λ + { l≋l′ record { l₁ = _ ; l₂ = _ ; l₁∈A = l₁∈A ; l₂∈B = l₂∈B ; eq = eq } → record + { l₁∈A = l₁∈A ; l₂∈B = l₂∈B ; eq = ≋-trans eq l≋l′ } + } + } + +∙-cong : ∀ {a} → Congruent₂ _≈_ (_∙_ {c ⊔ ℓ ⊔ a}) +∙-cong X≈Y U≈V = record + { f = λ + { record { l₁∈A = l₁∈X ; l₂∈B = l₂∈Y ; eq = eq } → record + { l₁∈A = X≈Y.f l₁∈X + ; l₂∈B = U≈V.f l₂∈Y + ; eq = eq + } + } + ; f⁻¹ = λ + { record { l₁∈A = l₁∈Y ; l₂∈B = l₂∈V ; eq = eq } → record + { l₁∈A = X≈Y.f⁻¹ l₁∈Y + ; l₂∈B = U≈V.f⁻¹ l₂∈V + ; eq = eq + } + } + } + where + module X≈Y = _≈_ X≈Y + module U≈V = _≈_ U≈V + +∙-assoc : ∀ {a b c} (A : Language a) (B : Language b) (C : Language c) → + (A ∙ B) ∙ C ≈ A ∙ (B ∙ C) +∙-assoc A B C = record + { f = λ + { record + { l₂ = l₃ + ; l₁∈A = record { l₁ = l₁ ; l₂ = l₂ ; l₁∈A = l₁∈A ; l₂∈B = l₂∈B ; eq = eq₁ } + ; l₂∈B = l₃∈C + ; eq = eq₂ + } → record + { l₁∈A = l₁∈A + ; l₂∈B = record + { l₁∈A = l₂∈B + ; l₂∈B = l₃∈C + ; eq = ≋-refl + } + ; eq = ≋-trans (≋-sym (≋-reflexive (++-assoc l₁ l₂ l₃))) (≋-trans (++⁺ eq₁ ≋-refl) eq₂) + } + } + ; f⁻¹ = λ + { record + { l₁ = l₁ + ; l₁∈A = l₁∈A + ; l₂∈B = record { l₁ = l₂ ; l₂ = l₃ ; l₁∈A = l₂∈B ; l₂∈B = l₃∈C ; eq = eq₁ } + ; eq = eq₂ + } → record + { l₁∈A = record + { l₁∈A = l₁∈A + ; l₂∈B = l₂∈B + ; eq = ≋-refl + } + ; l₂∈B = l₃∈C + ; eq = ≋-trans (≋-reflexive (++-assoc l₁ l₂ l₃)) (≋-trans (++⁺ ≋-refl eq₁) eq₂) + } + } + } + +∙-identityˡ : ∀ {a} → LeftIdentity _≈_ (𝕃.Lift (ℓ ⊔ a) {ε}) _∙_ +∙-identityˡ X = record + { f = λ + { record { l₁ = [] ; l₂∈B = l∈X ; eq = eq } → X.∈-resp-≋ eq l∈X + } + ; f⁻¹ = λ l∈X → record + { l₁∈A = lift ≡.refl + ; l₂∈B = l∈X + ; eq = ≋-refl + } + } + where + module X = Language X -∙-unique-prefix : ∀ {a b} (A : Language a) (B : Language b) → Empty (flast A ∩ first B) → ¬ (null A) → ∀ {l} → (l∈A∙B l∈A∙B′ : l ∈ A ∙ B) → proj₁ l∈A∙B ≋ proj₁ l∈A∙B′ -∙-unique-prefix _ _ _ ¬n₁ ([] , l₁∈A , _) _ = ⊥-elim (¬n₁ l₁∈A) -∙-unique-prefix _ _ _ ¬n₁ (_ ∷ _ , _) ([] , l₁′∈A , _) = ⊥-elim (¬n₁ l₁′∈A) -∙-unique-prefix A B ∄[l₁∩f₂] _ (c ∷ l₁ , l₁∈A , l₂ , l₂∈B , eq₁) (c′ ∷ l₁′ , l₁′∈A , l₂′ , l₂′∈B , eq₂) with compare (c ∷ l₁) l₂ (c′ ∷ l₁′) l₂′ (≋-trans eq₁ (≋-sym eq₂)) -... | cmp with <?> cmp -... | tri< l _ _ = ⊥-elim (∄[l₁∩f₂] w ((-, (λ ()) , l₁′∈A , -, A.∈-resp-≋ eq₃ l₁∈A) , (-, B.∈-resp-≋ (≋-sym eq₄) l₂′∈B))) +∙-unique-prefix : ∀ {a b} (A : Language a) (B : Language b) → Empty (flast A ∩ first B) → ¬ (null A) → ∀ {l} → (l∈A∙B l∈A∙B′ : l ∈ A ∙ B) → Concat.l₁ l∈A∙B ≋ Concat.l₁ l∈A∙B′ × Concat.l₂ l∈A∙B ≋ Concat.l₂ l∈A∙B′ +∙-unique-prefix A B ∄[l₁∩f₂] ¬n₁ l∈A∙B l∈A∙B′ with Compare.compare (Concat.l₁ l∈A∙B) (Concat.l₂ l∈A∙B) (Concat.l₁ l∈A∙B′) (Concat.l₂ l∈A∙B′) (≋-trans (Concat.eq l∈A∙B) (≋-sym (Concat.eq l∈A∙B′))) +... | cmp with Compare.<?> cmp +... | tri< l _ _ = ⊥-elim (∄[l₁∩f₂] w ((-, (λ { ≡.refl → ¬n₁ (Concat.l₁∈A l∈A∙B′)}) , (Concat.l₁∈A l∈A∙B′) , -, A.∈-resp-≋ eq₃ (Concat.l₁∈A l∈A∙B)) , (-, B.∈-resp-≋ (≋-sym eq₄) (Concat.l₂∈B l∈A∙B′)))) where module A = Language A module B = Language B - lsplit = left-split cmp l + lsplit = Compare.left-split cmp l w = proj₁ lsplit eq₃ = (proj₁ ∘ proj₂ ∘ proj₂) lsplit eq₄ = (proj₂ ∘ proj₂ ∘ proj₂) lsplit -... | tri≈ _ e _ = eq-split cmp e -... | tri> _ _ r = ⊥-elim (∄[l₁∩f₂] w ((-, (λ ()) , l₁∈A , -, A.∈-resp-≋ (≋-sym eq₃) l₁′∈A) , (-, (B.∈-resp-≋ eq₄ l₂∈B)))) +... | tri≈ _ e _ = Compare.eq-split cmp e +... | tri> _ _ r = ⊥-elim (∄[l₁∩f₂] w ((-, (λ { ≡.refl → ¬n₁ (Concat.l₁∈A l∈A∙B)}) , (Concat.l₁∈A l∈A∙B) , -, A.∈-resp-≋ (≋-sym eq₃) (Concat.l₁∈A l∈A∙B′)) , (-, (B.∈-resp-≋ eq₄ (Concat.l₂∈B l∈A∙B))))) where module A = Language A module B = Language B - rsplit = right-split cmp r + rsplit = Compare.right-split cmp r w = proj₁ rsplit eq₃ = (proj₁ ∘ proj₂ ∘ proj₂) rsplit eq₄ = (proj₂ ∘ proj₂ ∘ proj₂) rsplit + +∙-identityʳ : ∀ {a} → RightIdentity _≈_ (𝕃.Lift (ℓ ⊔ a) {ε}) _∙_ +∙-identityʳ X = record + { f = λ + { record { l₁ = l₁ ; l₂ = [] ; l₁∈A = l∈X ; eq = eq } → X.∈-resp-≋ (≋-trans (≋-sym (≋-reflexive (++-identityʳ l₁))) eq) l∈X + } + ; f⁻¹ = λ {l} l∈X → record + { l₁∈A = l∈X + ; l₂∈B = lift ≡.refl + ; eq = ≋-reflexive (++-identityʳ l) + } + } + where + module X = Language X + +isMagma : ∀ {a} → IsMagma _≈_ (_∙_ {c ⊔ ℓ ⊔ a}) +isMagma {a} = record + { isEquivalence = ≈-isEquivalence + ; ∙-cong = ∙-cong {a} + } + +isSemigroup : ∀ {a} → IsSemigroup _≈_ (_∙_ {c ⊔ ℓ ⊔ a}) +isSemigroup {a} = record + { isMagma = isMagma {a} + ; assoc = ∙-assoc + } + +isMonoid : ∀ {a} → IsMonoid _≈_ _∙_ (𝕃.Lift (ℓ ⊔ a) {ε}) +isMonoid {a} = record + { isSemigroup = isSemigroup {a} + ; identity = ∙-identityˡ {a} , ∙-identityʳ {a} + } diff --git a/src/Cfe/Type/Base.agda b/src/Cfe/Type/Base.agda index 438dd65..33af9f6 100644 --- a/src/Cfe/Type/Base.agda +++ b/src/Cfe/Type/Base.agda @@ -10,6 +10,7 @@ open Setoid over using () renaming (Carrier to C; _≈_ to _∼_) open import Cfe.Language over hiding (_≤_; _≈_) open import Data.Bool as 𝔹 hiding (_∨_) renaming (_≤_ to _≤ᵇ_) +open import Data.Empty.Polymorphic open import Level as L renaming (suc to lsuc) open import Relation.Unary as U open import Relation.Binary.PropositionalEquality using (_≡_) @@ -45,8 +46,8 @@ _∨_ : ∀ {fℓ₁ lℓ₁ fℓ₂ lℓ₂} → Type fℓ₁ lℓ₁ → Type _∙_ : ∀ {fℓ₁ lℓ₁ fℓ₂ lℓ₂} → Type fℓ₁ lℓ₁ → Type fℓ₂ lℓ₂ → Type (fℓ₁ ⊔ fℓ₂) (lℓ₁ ⊔ fℓ₂ ⊔ lℓ₂) _∙_ {lℓ₁ = lℓ₁} {fℓ₂} {lℓ₂} τ₁ τ₂ = record { Null = Null τ₁ ∧ Null τ₂ - ; First = First τ₁ ∪ (if Null τ₁ then First τ₂ else λ x → L.Lift fℓ₂ (x U.∈ U.∅)) - ; Flast = Flast τ₂ ∪ (if Null τ₂ then First τ₂ ∪ Flast τ₁ else λ x → L.Lift (lℓ₁ ⊔ fℓ₂) (x U.∈ U.∅)) + ; First = First τ₁ ∪ (if Null τ₁ then First τ₂ else λ x → ⊥) + ; Flast = Flast τ₂ ∪ (if Null τ₂ then First τ₂ ∪ Flast τ₁ else λ x → ⊥) } record _⊨_ {a} {fℓ} {lℓ} (A : Language a) (τ : Type fℓ lℓ) : Set (c ⊔ a ⊔ fℓ ⊔ lℓ) where diff --git a/src/Cfe/Type/Properties.agda b/src/Cfe/Type/Properties.agda index 37f491b..e9ed634 100644 --- a/src/Cfe/Type/Properties.agda +++ b/src/Cfe/Type/Properties.agda @@ -19,12 +19,15 @@ open import Data.Bool renaming (_≤_ to _≤ᵇ_; _∨_ to _∨ᵇ_) open import Data.Bool.Properties hiding (≤-reflexive; ≤-trans) open import Data.Empty open import Data.List hiding (null) +open import Data.List.Properties using (++-identityʳ; ++-assoc) open import Data.List.Relation.Binary.Equality.Setoid over open import Data.Nat hiding (_≤ᵇ_; _^_) renaming (_≤_ to _≤ⁿ_) open import Data.Nat.Properties using (≤-stepsˡ; ≤-stepsʳ) renaming (≤-refl to ≤ⁿ-refl) open import Data.Product as Product open import Data.Sum as Sum +import Level as L open import Function hiding (_⟶_) +import Relation.Unary as U open import Relation.Unary.Properties open import Relation.Binary.PropositionalEquality @@ -118,19 +121,81 @@ L⊨τε⇒L≤{ε}{L = L} L⊨τε = record ∙-⊨ : ∀ {a b fℓ₁ lℓ₁ fℓ₂ lℓ₂} {A : Language a} {B : Language b} {τ₁ : Type fℓ₁ lℓ₁} {τ₂ : Type fℓ₂ lℓ₂} → A ⊨ τ₁ → B ⊨ τ₂ → τ₁ ⊛ τ₂ → A ∙ˡ B ⊨ τ₁ ∙ τ₂ ∙-⊨ {A = A} {B} {τ₁} {τ₂} A⊨τ₁ B⊨τ₂ τ₁⊛τ₂ = record - { n⇒n = λ { ([] , l∈A , _) → ⊥-elim (L⊨τ+¬N⇒ε∉L A⊨τ₁ τ₁⊛τ₂.¬n₁ l∈A) } + { n⇒n = λ { record { l₁ = [] ; l₁∈A = ε∈A } → ⊥-elim (L⊨τ+¬N⇒ε∉L A⊨τ₁ τ₁⊛τ₂.¬n₁ ε∈A) } ; f⇒f = λ - { (_ , [] , l∈A , l′ , l′∈B , _) → ⊥-elim (L⊨τ+¬N⇒ε∉L A⊨τ₁ τ₁⊛τ₂.¬n₁ l∈A) - ; (_ , x ∷ l , l∈A , l′ , l′∈B , x≈x ∷ _) → inj₁ (A⊨τ₁.f⇒f (l , A.∈-resp-≋ (x≈x ∷ ≋-refl) l∈A)) + { (_ , record { l₁ = [] ; l₁∈A = ε∈A }) → ⊥-elim (L⊨τ+¬N⇒ε∉L A⊨τ₁ τ₁⊛τ₂.¬n₁ ε∈A) + ; (_ , record { l₁ = x ∷ l ; l₁∈A = xl∈A ; eq = x∼x ∷ _ }) → inj₁ (A⊨τ₁.f⇒f (l , A.∈-resp-≋ (x∼x ∷ ≋-refl) xl∈A)) } - ; l⇒l = {!!} + ; l⇒l = l⇒l } where module A = Language A + module B = Language B module A⊨τ₁ = _⊨_ A⊨τ₁ module B⊨τ₂ = _⊨_ B⊨τ₂ module τ₁⊛τ₂ = _⊛_ τ₁⊛τ₂ + null-case : ∀ {c} → null B → Flast τ₂ c ⊎ First τ₂ c ⊎ Flast τ₁ c → Flast (τ₁ ∙ τ₂) c + null-case {c} ε∈B proof = case ∃[ b ] (null B → T b) ∋ Null τ₂ , B⊨τ₂.n⇒n return (λ (b , _) → (Flast τ₂ U.∪ (if b then _ else _)) c) of λ + { (false , n⇒n) → ⊥-elim (n⇒n ε∈B) + ; (true , _) → proof + } + + l⇒l : flast (A ∙ˡ B) U.⊆ Flast (τ₁ ∙ τ₂) + l⇒l {c} (l , l≢ε , l∈A∙B @ record {l₂ = l₂} , l′ , lcl′∈A∙B) with Compare.compare + (Concat.l₁ l∈A∙B) + (Concat.l₂ l∈A∙B ++ c ∷ l′) + (Concat.l₁ lcl′∈A∙B) + (Concat.l₂ lcl′∈A∙B) + (begin + Concat.l₁ l∈A∙B ++ Concat.l₂ l∈A∙B ++ c ∷ l′ ≡˘⟨ ++-assoc (Concat.l₁ l∈A∙B) (Concat.l₂ l∈A∙B) (c ∷ l′) ⟩ + (Concat.l₁ l∈A∙B ++ Concat.l₂ l∈A∙B) ++ c ∷ l′ ≈⟨ ++⁺ (Concat.eq l∈A∙B) ≋-refl ⟩ + l ++ c ∷ l′ ≈˘⟨ Concat.eq lcl′∈A∙B ⟩ + Concat.l₁ lcl′∈A∙B ++ Concat.l₂ lcl′∈A∙B ∎) + where + open import Relation.Binary.Reasoning.Setoid ≋-setoid + ... | cmp with Compare.<?> cmp + ... | tri< x _ _ = ⊥-elim (τ₁⊛τ₂.∄[l₁∩f₂] y (A⊨τ₁.l⇒l (-, l₁′≢ε , Concat.l₁∈A lcl′∈A∙B , -, l₁′yw∈A) , B⊨τ₂.f⇒f (-, yw′∈B))) + where + lsplit = Compare.left-split cmp x + y = proj₁ lsplit + l₁′≢ε = λ { refl → case ∃[ b ] T (not b) × (null A → T b) ∋ Null τ₁ , τ₁⊛τ₂.¬n₁ , A⊨τ₁.n⇒n of λ + { (false , _ , n⇒n) → n⇒n (Concat.l₁∈A lcl′∈A∙B) + ; (true , ¬n₁ , _) → ¬n₁ + } } + l₁′yw∈A = A.∈-resp-≋ (proj₁ (proj₂ (proj₂ lsplit))) (Concat.l₁∈A l∈A∙B) + yw′∈B = B.∈-resp-≋ (≋-sym (proj₂ (proj₂ (proj₂ lsplit)))) (Concat.l₂∈B lcl′∈A∙B) + l⇒l {c} (l , l≢ε , l∈A∙B @ record { l₂ = [] } , l′ , lcl′∈A∙B) | cmp | tri≈ _ x _ = + null-case (Concat.l₂∈B l∈A∙B) (inj₂ (inj₁ (B⊨τ₂.f⇒f (-, cl′∈B)))) + where + esplit = Compare.eq-split cmp x + cl′∈B = B.∈-resp-≋ (≋-sym (proj₂ esplit)) (Concat.l₂∈B lcl′∈A∙B) + l⇒l {c} (l , l≢ε , l∈A∙B @ record { l₂ = _ ∷ _ } , l′ , lcl′∈A∙B) | cmp | tri≈ _ x _ = + inj₁ (B⊨τ₂.l⇒l (-, (λ ()) , Concat.l₂∈B l∈A∙B , -, l₂cl′∈A∙B)) + where + esplit = Compare.eq-split cmp x + l₂cl′∈A∙B = B.∈-resp-≋ (≋-sym (proj₂ esplit)) (Concat.l₂∈B lcl′∈A∙B) + l⇒l {c} (l , l≢ε , l∈A∙B @ record { l₂ = [] } , l′ , lcl′∈A∙B) | cmp | tri> _ _ x = + null-case (Concat.l₂∈B l∈A∙B) (inj₂ (inj₂ (A⊨τ₁.l⇒l (-, l≢ε , l∈A , -, lcw∈A)))) + where + rsplit = Compare.right-split cmp x + c∼y = case proj₂ (proj₂ (proj₂ rsplit)) of λ { (c∼y ∷ _) → c∼y } + l₁≋l = ≋-trans (≋-sym (≋-reflexive (++-identityʳ (Concat.l₁ l∈A∙B)))) (Concat.eq l∈A∙B) + lcw≋l₁yw = ≋-sym (≋-trans (++⁺ (≋-sym l₁≋l) (c∼y ∷ ≋-refl)) (proj₁ (proj₂ (proj₂ rsplit)))) + l∈A = A.∈-resp-≋ l₁≋l (Concat.l₁∈A l∈A∙B) + lcw∈A = A.∈-resp-≋ lcw≋l₁yw (Concat.l₁∈A lcl′∈A∙B) + l⇒l {c} (l , l≢ε , l∈A∙B @ record { l₂ = y ∷ _ } , l′ , lcl′∈A∙B) | cmp | tri> _ _ x = + ⊥-elim (τ₁⊛τ₂.∄[l₁∩f₂] y (A⊨τ₁.l⇒l (-, l₁≢ε , Concat.l₁∈A l∈A∙B , -, l₁yw∈A) , B⊨τ₂.f⇒f (-, Concat.l₂∈B l∈A∙B))) + where + rsplit = Compare.right-split cmp x + l₁≢ε = λ { refl → case ∃[ b ] T (not b) × (null A → T b) ∋ Null τ₁ , τ₁⊛τ₂.¬n₁ , A⊨τ₁.n⇒n of λ + { (false , _ , n⇒n) → n⇒n (Concat.l₁∈A l∈A∙B) + ; (true , ¬n₁ , _) → ¬n₁ + } } + y∼z = case proj₂ (proj₂ (proj₂ rsplit)) of λ { (y∼z ∷ _) → y∼z } + l₁′≋l₁yw = ≋-sym (≋-trans (++⁺ ≋-refl (y∼z ∷ ≋-refl)) (proj₁ (proj₂ (proj₂ rsplit)))) + l₁yw∈A = A.∈-resp-≋ l₁′≋l₁yw (Concat.l₁∈A lcl′∈A∙B) + ∪-⊨ : ∀ {a b fℓ₁ lℓ₁ fℓ₂ lℓ₂} {A : Language a} {B : Language b} {τ₁ : Type fℓ₁ lℓ₁} {τ₂ : Type fℓ₂ lℓ₂} → A ⊨ τ₁ → B ⊨ τ₂ → τ₁ # τ₂ → A ∪ B ⊨ τ₁ ∨ τ₂ ∪-⊨ {A = A} {B} {τ₁} {τ₂} A⊨τ₁ B⊨τ₂ τ₁#τ₂ = record |