summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorChloe Brown <chloe.brown.00@outlook.com>2021-04-17 13:51:47 +0100
committerChloe Brown <chloe.brown.00@outlook.com>2021-04-17 13:51:47 +0100
commita5e00b31b873f7deaefa7cb0f60595452f40a57c (patch)
treed397635ca8c90f0d3483fc10557e9a0682d47f35
parent7cc5e28370079de3aab98ab536ae601392c31065 (diff)
Rework Context one last time.
-rw-r--r--src/Cfe/Context/Base.agda118
-rw-r--r--src/Cfe/Context/Properties.agda371
-rw-r--r--src/Cfe/Fin.agda6
-rw-r--r--src/Cfe/Fin/Base.agda92
-rw-r--r--src/Cfe/Fin/Properties.agda33
5 files changed, 440 insertions, 180 deletions
diff --git a/src/Cfe/Context/Base.agda b/src/Cfe/Context/Base.agda
index a428d3c..e152790 100644
--- a/src/Cfe/Context/Base.agda
+++ b/src/Cfe/Context/Base.agda
@@ -6,91 +6,61 @@ module Cfe.Context.Base
{c ℓ} (over : Setoid c ℓ)
where
-open import Cfe.Type over
-open import Data.Empty
-open import Data.Fin as F hiding (cast)
-open import Data.Fin.Properties hiding (≤-trans)
-open import Data.Nat as ℕ hiding (_⊔_)
-open import Data.Nat.Properties as NP
-open import Data.Product
-open import Data.Vec
+open import Cfe.Fin
+open import Cfe.Type over using (Type) renaming (_≈_ to _≈ᵗ_; _≤_ to _≤ᵗ_)
+open import Data.Fin hiding (_+_) renaming (zero to #0; suc to 1+_; _≤_ to _≤ᶠ_)
+open import Data.Fin.Properties using (toℕ-fromℕ; toℕ-inject₁)
+open import Data.Nat using (ℕ; suc; _∸_; _+_)
+open import Data.Nat.Properties using (+-suc)
+open import Data.Product using (_×_)
+open import Data.Vec using (Vec; []; insert)
+open import Data.Vec.Relation.Binary.Pointwise.Inductive using (Pointwise)
open import Level renaming (suc to lsuc)
-open import Relation.Binary.PropositionalEquality
-open import Relation.Nullary
+open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; module ≡-Reasoning)
+open import Relation.Nullary.Decidable using (True)
-drop′ : ∀ {a A n m i} → m ℕ.≤ n → i ℕ.≤ m → Vec {a} A (m ℕ.+ (n ∸ m)) → Vec A (n ∸ i)
-drop′ z≤n z≤n xs = xs
-drop′ (s≤s m≤n) z≤n (x ∷ xs) = x ∷ drop′ m≤n z≤n xs
-drop′ (s≤s m≤n) (s≤s i≤m) (x ∷ xs) = drop′ m≤n i≤m xs
+private
+ variable
+ n : ℕ
-take′ : ∀ {a A m i} → i ℕ.≤ m → Vec {a} A m → Vec A i
-take′ z≤n xs = []
-take′ (s≤s i≤m) (x ∷ xs) = x ∷ (take′ i≤m xs)
+------------------------------------------------------------------------
+-- Definitions
-reduce≥′ : ∀ {n m i} → m ℕ.≤ n → toℕ {n} i ≥ m → Fin (n ∸ m)
-reduce≥′ {i = i} z≤n i≥m = i
-reduce≥′ {i = suc i} (s≤s m≤n) (s≤s i≥m) = reduce≥′ m≤n i≥m
+infix 4 _⊐_
-reduce≥′-mono : ∀ {n m i j} → (m≤n : m ℕ.≤ n) → (i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i≥m F.≤ reduce≥′ m≤n (≤-trans i≥m i≤j)
-reduce≥′-mono z≤n i≥m i≤j = i≤j
-reduce≥′-mono {i = suc i} {suc j} (s≤s m≤n) (s≤s i≥m) (s≤s i≤j) = reduce≥′-mono m≤n i≥m i≤j
+record Context n : Set (c ⊔ lsuc ℓ) where
+ constructor _⊐_
+ field
+ Γ,Δ : Vec (Type ℓ ℓ) n
+ guard : Fin (suc n)
-insert′ : ∀ {a A n m} → Vec {a} A (n ∸ suc m) → suc m ℕ.≤ n → Fin (n ∸ m) → A → Vec A (n ∸ m)
-insert′ xs (s≤s z≤n) i x = insert xs i x
-insert′ xs (s≤s (s≤s m≤n)) i x = insert′ xs (s≤s m≤n) i x
+open Context public
-rotate : ∀ {a A n} {i j : Fin n} → Vec {a} A n → i F.≤ j → Vec A n
-rotate {i = F.zero} {j} (x ∷ xs) z≤n = insert xs j x
-rotate {i = suc i} {suc j} (x ∷ xs) (s≤s i≤j) = x ∷ (rotate xs i≤j)
+∙,∙ : Context 0
+∙,∙ = [] ⊐ #0
-remove′ : ∀ {a A n} → Vec {a} A n → Fin n → Vec A (ℕ.pred n)
-remove′ (x ∷ xs) F.zero = xs
-remove′ (x ∷ y ∷ xs) (suc i) = x ∷ remove′ (y ∷ xs) i
+------------------------------------------------------------------------
+-- Insertions
-record Context n : Set (c ⊔ lsuc ℓ) where
- field
- m : ℕ
- m≤n : m ℕ.≤ n
- Γ : Vec (Type ℓ ℓ) (n ∸ m)
- Δ : Vec (Type ℓ ℓ) m
+wkn₂ : ∀ (ctx : Context n) → Fin< (1+ guard ctx) → Type ℓ ℓ → Context (suc n)
+wkn₂ (Γ,Δ ⊐ g) i τ = insert Γ,Δ (inject<! i) τ ⊐ 1+ g
-∙,∙ : Context 0
-∙,∙ = record { m≤n = z≤n ; Γ = [] ; Δ = [] }
-
-toVec : ∀ {n} → Context n → Vec (Type ℓ ℓ) n
-toVec record { m = .0 ; m≤n = _ ; Γ = Γ ; Δ = [] } = Γ
-toVec {suc n} record { m = .(suc _) ; m≤n = (s≤s m≤n) ; Γ = Γ ; Δ = (x ∷ Δ) } = x ∷ toVec (record { m≤n = m≤n ; Γ = Γ ; Δ = Δ })
-
-wkn₁ : ∀ {n i} → (Γ,Δ : Context n) → toℕ {suc n} i ≥ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n)
-wkn₁ Γ,Δ i≥m τ = record
- { m≤n = ≤-step m≤n
- ; Γ = insert′ Γ (s≤s m≤n) (reduce≥′ (≤-step m≤n) i≥m) τ
- ; Δ = Δ
- }
- where
- open Context Γ,Δ
-
-wkn₂ : ∀ {n i} → (Γ,Δ : Context n) → toℕ {suc n} i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n)
-wkn₂ Γ,Δ i≤m τ = record
- { m≤n = s≤s m≤n
- ; Γ = Γ
- ; Δ = insert Δ (fromℕ< (s≤s i≤m)) τ
- }
- where
- open Context Γ,Δ
+wkn₁ : ∀ (ctx : Context n) → Fin> (guard ctx) → Type ℓ ℓ → Context (suc n)
+wkn₁ (Γ,Δ ⊐ g) i τ = insert Γ,Δ (raise> i) τ ⊐ inject₁ g
+
+------------------------------------------------------------------------
+-- Modifications
+
+shift : ∀ (ctx : Context n) → Fin< (1+ guard ctx) → Context n
+shift (Γ,Δ ⊐ _) i = Γ,Δ ⊐ inject<! i
-shift≤ : ∀ {n i} (Γ,Δ : Context n) → i ℕ.≤ Context.m Γ,Δ → Context n
-shift≤ {n} {i} record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤m = record
- { m≤n = ≤-trans i≤m m≤n
- ; Γ = drop′ m≤n i≤m (Δ ++ Γ)
- ; Δ = take′ i≤m Δ
- }
+------------------------------------------------------------------------
+-- Relations
-cons : ∀ {n} → Context n → Type ℓ ℓ → Context (suc n)
-cons Γ,Δ τ = wkn₂ Γ,Δ z≤n τ
+-- infix 4 _≈_ _≤_
-shift : ∀ {n} → Context n → Context n
-shift Γ,Δ = shift≤ Γ,Δ z≤n
+_≈_ : Rel (Context n) _
+(Γ,Δ₁ ⊐ g₁) ≈ (Γ,Δ₂ ⊐ g₂) = g₁ ≡ g₂ × Pointwise _≈ᵗ_ Γ,Δ₁ Γ,Δ₂
-_≋_ : ∀ {n} → Rel (Context n) (c ⊔ lsuc ℓ)
-Γ,Δ ≋ Γ,Δ′ = Σ (Context.m Γ,Δ ≡ Context.m Γ,Δ′) λ {refl → Context.Γ Γ,Δ ≡ Context.Γ Γ,Δ′ × Context.Δ Γ,Δ ≡ Context.Δ Γ,Δ′}
+_≤_ : Rel (Context n) _
+(Γ,Δ₁ ⊐ g₁) ≤ (Γ,Δ₂ ⊐ g₂) = g₂ ≤ᶠ g₁ × Pointwise _≤ᵗ_ Γ,Δ₁ Γ,Δ₂
diff --git a/src/Cfe/Context/Properties.agda b/src/Cfe/Context/Properties.agda
index 42792d4..b718518 100644
--- a/src/Cfe/Context/Properties.agda
+++ b/src/Cfe/Context/Properties.agda
@@ -1,122 +1,281 @@
{-# OPTIONS --without-K --safe #-}
-open import Relation.Binary using (Setoid; Symmetric; Transitive)
+open import Relation.Binary
module Cfe.Context.Properties
{c ℓ} (over : Setoid c ℓ)
where
open import Cfe.Context.Base over as C
-open import Cfe.Type over
-open import Data.Empty
-open import Data.Fin as F
-open import Data.Nat as ℕ
-open import Data.Nat.Properties
+open import Cfe.Fin
+open import Cfe.Type over using ()
+ renaming
+ ( _≈_ to _≈ᵗ_
+ ; ≈-refl to ≈ᵗ-refl
+ ; ≈-sym to ≈ᵗ-sym
+ ; ≈-trans to ≈ᵗ-trans
+ ; _≤_ to _≤ᵗ_
+ ; ≤-refl to ≤ᵗ-refl
+ ; ≤-reflexive to ≤ᵗ-reflexive
+ ; ≤-trans to ≤ᵗ-trans
+ ; ≤-antisym to ≤ᵗ-antisym
+ )
+open import Data.Fin hiding (pred; _≟_) renaming (_≤_ to _≤ᶠ_)
+open import Data.Fin.Properties using (toℕ-inject₁; toℕ<n)
+ renaming
+ ( ≤-refl to ≤ᶠ-refl
+ ; ≤-reflexive to ≤ᶠ-reflexive
+ ; ≤-trans to ≤ᶠ-trans
+ ; ≤-antisym to ≤ᶠ-antisym
+ )
+open import Data.Nat renaming (_≤_ to _≤ⁿ_)
+open import Data.Nat.Properties using (module ≤-Reasoning) renaming (≤-reflexive to ≤ⁿ-reflexive)
open import Data.Product
-open import Data.Vec
+open import Data.Vec using ([]; _∷_; Vec; insert)
+open import Data.Vec.Relation.Binary.Pointwise.Inductive as Pw using ([]; _∷_; Pointwise)
open import Function
-open import Relation.Binary.PropositionalEquality
+open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong)
+open import Relation.Nullary.Decidable using (True; toWitness; fromWitness)
-≋-sym : ∀ {n} → Symmetric (_≋_ {n})
-≋-sym (refl , refl , refl) = refl , refl , refl
+private
+ variable
+ n : ℕ
-≋-trans : ∀ {n} → Transitive (_≋_ {n})
-≋-trans (refl , refl , refl) (refl , refl , refl) = refl , refl , refl
+------------------------------------------------------------------------
+-- Properties for Pointwise
+------------------------------------------------------------------------
-i≤j⇒inject₁[i]≤1+j : ∀ {n i j} → i F.≤ j → inject₁ {n} i F.≤ suc j
-i≤j⇒inject₁[i]≤1+j {i = zero} i≤j = z≤n
-i≤j⇒inject₁[i]≤1+j {i = suc i} {suc j} (s≤s i≤j) = s≤s (i≤j⇒inject₁[i]≤1+j i≤j)
+ pw-antisym :
+ ∀ {a b ℓ} {A : Set a} {B : Set b} {P : REL A B ℓ} {Q : REL B A ℓ} {R : REL A B ℓ} {m n} →
+ Antisym P Q R → Antisym (Pointwise P {m} {n}) (Pointwise Q) (Pointwise R)
+ pw-antisym antisym [] [] = []
+ pw-antisym antisym (x ∷ xs) (y ∷ ys) = antisym x y ∷ pw-antisym antisym xs ys
-wkn₂-comm : ∀ {n i j} Γ,Δ i≤j j≤m τ₁ τ₂ → wkn₂ (wkn₂ {n} {i} Γ,Δ (≤-trans i≤j j≤m) τ₁) (s≤s j≤m) τ₂ ≋ wkn₂ (wkn₂ {i = j} Γ,Δ j≤m τ₂) (≤-trans (i≤j⇒inject₁[i]≤1+j i≤j) (s≤s j≤m)) τ₁
-wkn₂-comm record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤j j≤m τ₁ τ₂ = refl , refl , eq Δ i≤j j≤m τ₁ τ₂
- where
- eq : ∀ {a A n m i j} ys (i≤j : i F.≤ j) (j≤m : toℕ {n} j ℕ.≤ m) y₁ y₂ →
- insert {a} {A} (insert ys (fromℕ< (s≤s (≤-trans i≤j j≤m))) y₁) (fromℕ< (s≤s (s≤s j≤m))) y₂ ≡
- insert (insert ys (fromℕ< (s≤s j≤m)) y₂) (fromℕ< (s≤s (≤-trans (i≤j⇒inject₁[i]≤1+j i≤j) (s≤s j≤m)))) y₁
- eq {i = zero} _ _ _ _ _ = refl
- eq {i = suc i} {j = suc j} (x ∷ ys) (s≤s i≤j) (s≤s j≤m) y₁ y₂ = cong (x ∷_) (eq ys i≤j j≤m y₁ y₂)
-
-shift≤-identity : ∀ {n} Γ,Δ → shift≤ {n} Γ,Δ ≤-refl ≋ Γ,Δ
-shift≤-identity record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } = refl , eq₁ Γ Δ m≤n , eq₂ Δ
- where
- eq₁ : ∀ {a A n m} xs ys (m≤n : m ℕ.≤ n) → drop′ {a} {A} m≤n ≤-refl (ys ++ xs) ≡ xs
- eq₁ xs [] z≤n = refl
- eq₁ xs (_ ∷ ys) (s≤s m≤n) = eq₁ xs ys m≤n
+ pw-insert :
+ ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} {n} {xs : Vec A n} {ys : Vec B n} →
+ ∀ i j {i≡j : True (toℕ i ≟ toℕ j)} {x y} →
+ x ∼ y → Pointwise _∼_ xs ys → Pointwise _∼_ (insert xs i x) (insert ys j y)
+ pw-insert zero zero x xs = x ∷ xs
+ pw-insert (suc i) (suc j) {i≡j} x (y ∷ xs) =
+ y ∷ pw-insert i j {i≡j |> toWitness |> cong pred |> fromWitness} x xs
- eq₂ : ∀ {a A m} ys → take′ {a} {A} {m} ≤-refl ys ≡ ys
- eq₂ [] = refl
- eq₂ (x ∷ ys) = cong (x ∷_) (eq₂ ys)
+------------------------------------------------------------------------
+-- Properties of _≈_
+------------------------------------------------------------------------
+-- Relational Properties
-shift≤-idem : ∀ {n i j} Γ,Δ i≤j j≤m → shift≤ {n} {i} (shift≤ {i = j} Γ,Δ j≤m) i≤j ≋ shift≤ Γ,Δ (≤-trans i≤j j≤m)
-shift≤-idem record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤j j≤m = refl , eq₁ Γ Δ m≤n i≤j j≤m , eq₂ Δ i≤j j≤m
- where
- eq₁ : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤j : i ℕ.≤ j) (j≤m : j ℕ.≤ m) →
- drop′ {a} {A} (≤-trans j≤m m≤n) i≤j (take′ j≤m ys ++ drop′ m≤n j≤m (ys ++ xs)) ≡
- drop′ m≤n (≤-trans i≤j j≤m) (ys ++ xs)
- eq₁ _ _ _ z≤n z≤n = refl
- eq₁ xs (y ∷ ys) (s≤s m≤n) z≤n (s≤s j≤m) = cong (y ∷_) (eq₁ xs ys m≤n z≤n j≤m)
- eq₁ xs (_ ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) = eq₁ xs ys m≤n i≤j j≤m
-
- eq₂ : ∀ {a A m i j} ys (i≤j : i ℕ.≤ j) (j≤m : j ℕ.≤ m) → take′ {a} {A} i≤j (take′ j≤m ys) ≡ take′ (≤-trans i≤j j≤m) ys
- eq₂ ys z≤n j≤m = refl
- eq₂ (y ∷ ys) (s≤s i≤j) (s≤s j≤m) = cong (y ∷_) (eq₂ ys i≤j j≤m)
-
-shift≤-wkn₁-comm : ∀ {n i j} Γ,Δ i≤m j≥m τ →
- shift≤ {i = i} (wkn₁ {n} {j} Γ,Δ j≥m τ) i≤m ≋
- wkn₁ (shift≤ Γ,Δ i≤m) (≤-trans i≤m j≥m) τ
-shift≤-wkn₁-comm record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤m j≥m τ =
- refl , eq Γ Δ m≤n i≤m j≥m τ , refl
- where
- eq : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤m : i ℕ.≤ m) (j≥m : toℕ {suc n} j ≥ m) y →
- drop′ {a} {A} (≤-step m≤n) i≤m (ys ++ (insert′ xs (s≤s m≤n) (reduce≥′ (≤-step m≤n) j≥m) y)) ≡
- insert′ (drop′ m≤n i≤m (ys ++ xs)) (s≤s (≤-trans i≤m m≤n)) (reduce≥′ (≤-step (≤-trans i≤m m≤n)) (≤-trans i≤m j≥m)) y
- eq _ [] z≤n z≤n _ _ = refl
- eq {j = suc _} xs (x ∷ ys) (s≤s m≤n) z≤n (s≤s j≥m) y = cong (x ∷_) (eq xs ys m≤n z≤n j≥m y)
- eq {j = suc _} xs (_ ∷ ys) (s≤s m≤n) (s≤s i≤m) (s≤s j≥m) y = eq xs ys m≤n i≤m j≥m y
-
-shift≤-wkn₂-comm-≤ : ∀ {n i j} Γ,Δ i≤j j≤m τ →
- shift≤ {i = i} (wkn₂ {n} {j} Γ,Δ j≤m τ) (≤-trans i≤j (≤-step j≤m)) ≋
- wkn₁ (shift≤ Γ,Δ (≤-trans i≤j j≤m)) i≤j τ
-shift≤-wkn₂-comm-≤ record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤j j≤m τ =
- refl , eq₁ Γ Δ m≤n i≤j j≤m τ , eq₂ Δ i≤j j≤m τ
- where
- eq₁ : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤j : i ℕ.≤ toℕ {suc n} j) (j≤m : toℕ j ℕ.≤ m) y →
- drop′ {a} {A} (s≤s m≤n) (≤-trans i≤j (≤-step j≤m)) (insert ys (fromℕ< (s≤s j≤m)) y ++ xs) ≡
- insert′
- (drop′ m≤n (≤-trans i≤j j≤m) (ys ++ xs))
- (s≤s (≤-trans (≤-trans i≤j j≤m) m≤n))
- (reduce≥′ (≤-step (≤-trans (≤-trans i≤j j≤m) m≤n)) i≤j)
- y
- eq₁ {j = zero} _ _ _ z≤n _ _ = refl
- eq₁ {j = suc j} xs (x ∷ ys) (s≤s m≤n) z≤n (s≤s j≤m) y = cong (x ∷_) (eq₁ xs ys m≤n z≤n j≤m y)
- eq₁ {j = suc j} xs (x ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) y = eq₁ xs ys m≤n i≤j j≤m y
-
- eq₂ : ∀ {a A n m i j} ys (i≤j : i ℕ.≤ toℕ {suc n} j) (j≤m : toℕ j ℕ.≤ m) y →
- take′ {a} {A} (≤-trans i≤j (≤-step j≤m)) (insert ys (fromℕ< (s≤s j≤m)) y) ≡
- take′ (≤-trans i≤j j≤m) ys
- eq₂ {j = zero} _ z≤n _ _ = refl
- eq₂ {j = suc _} _ z≤n _ _ = refl
- eq₂ {j = suc zero} (_ ∷ _) (s≤s z≤n) (s≤s _) _ = refl
- eq₂ {j = suc (suc _)} (x ∷ ys) (s≤s i≤j) (s≤s j≤m) y = cong (x ∷_) (eq₂ ys i≤j j≤m y)
-
-shift≤-wkn₂-comm-> : ∀ {n i j} Γ,Δ i≤j j≤m τ →
- shift≤ {i = suc j} (wkn₂ {n} {i} Γ,Δ (≤-trans i≤j j≤m) τ) (s≤s j≤m) ≋
- wkn₂ (shift≤ Γ,Δ j≤m) i≤j τ
-shift≤-wkn₂-comm-> record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤j j≤m τ = refl , eq₁ Γ Δ m≤n i≤j j≤m τ , eq₂ Δ m≤n i≤j j≤m τ
- where
- eq₁ : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤j : toℕ {suc n} i ℕ.≤ j) (j≤m : j ℕ.≤ m) y →
- drop′ {a} {A} (s≤s m≤n) (s≤s j≤m) (insert ys (fromℕ< (s≤s (≤-trans i≤j j≤m))) y ++ xs) ≡
- drop′ m≤n j≤m (ys ++ xs)
- eq₁ {i = zero} _ _ _ _ _ _ = refl
- eq₁ {i = suc _} xs (_ ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) y = eq₁ xs ys m≤n i≤j j≤m y
-
- eq₂ : ∀ {a A n m i j} ys (m≤n : m ℕ.≤ n) (i≤j : toℕ {suc n} i ℕ.≤ j) (j≤m : j ℕ.≤ m) y →
- take′ {a} {A} (s≤s j≤m) (insert ys (fromℕ< (s≤s (≤-trans i≤j j≤m))) y) ≡
- insert (take′ j≤m ys) (fromℕ< (s≤s i≤j)) y
- eq₂ {i = zero} _ _ _ _ _ = refl
- eq₂ {i = suc _} (x ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) y = cong (x ∷_) (eq₂ ys m≤n i≤j j≤m y)
-
-shift≤-toVec : ∀ {n i} (Γ,Δ : Context n) (i≤m : i ℕ.≤ _) → toVec (shift≤ Γ,Δ i≤m) ≡ toVec Γ,Δ
-shift≤-toVec record { m = .0 ; m≤n = z≤n ; Γ = Γ ; Δ = [] } z≤n = refl
-shift≤-toVec {suc n} record { m = .(suc _) ; m≤n = (s≤s m≤n) ; Γ = Γ ; Δ = (x ∷ Δ) } z≤n = cong (x ∷_) (shift≤-toVec (record { m≤n = m≤n ; Γ = Γ ; Δ = Δ }) z≤n)
-shift≤-toVec {suc n} record { m = .(suc _) ; m≤n = (s≤s m≤n) ; Γ = Γ ; Δ = (x ∷ Δ) } (s≤s i≤m) = cong (x ∷_) (shift≤-toVec (record { m≤n = m≤n ; Γ = Γ ; Δ = Δ }) i≤m)
+≈-refl : Reflexive (_≈_ {n})
+≈-refl = refl , Pw.refl ≈ᵗ-refl
+
+≈-sym : Symmetric (_≈_ {n})
+≈-sym = map sym (Pw.sym ≈ᵗ-sym)
+
+≈-trans : Transitive (_≈_ {n})
+≈-trans = zip trans (Pw.trans ≈ᵗ-trans)
+
+------------------------------------------------------------------------
+-- Structures
+
+≈-isPartialEquivalence : IsPartialEquivalence (_≈_ {n})
+≈-isPartialEquivalence = record
+ { sym = ≈-sym
+ ; trans = ≈-trans
+ }
+
+≈-isEquivalence : IsEquivalence (_≈_ {n})
+≈-isEquivalence = record
+ { refl = ≈-refl
+ ; sym = ≈-sym
+ ; trans = ≈-trans
+ }
+
+------------------------------------------------------------------------
+-- Bundles
+
+partialSetoid : ∀ {n} → PartialSetoid _ _
+partialSetoid {n} = record { isPartialEquivalence = ≈-isPartialEquivalence {n} }
+
+setoid : ∀ {n} → Setoid _ _
+setoid {n} = record { isEquivalence = ≈-isEquivalence {n} }
+
+------------------------------------------------------------------------
+-- Properties of _≤_
+------------------------------------------------------------------------
+
+≤-refl : Reflexive (_≤_ {n})
+≤-refl = ≤ᶠ-refl , Pw.refl ≤ᵗ-refl
+
+≤-reflexive : (_≈_ {n}) ⇒ _≤_
+≤-reflexive = map (≤ᶠ-reflexive ∘ sym) (Pw.map ≤ᵗ-reflexive)
+
+≤-trans : Transitive (_≤_ {n})
+≤-trans = zip (flip ≤ᶠ-trans) (Pw.trans ≤ᵗ-trans)
+
+≤-antisym : Antisymmetric (_≈_ {n}) _≤_
+≤-antisym = zip (sym ∘₂ ≤ᶠ-antisym) (pw-antisym ≤ᵗ-antisym)
+
+------------------------------------------------------------------------
+-- Structures
+
+≤-isPreorder : IsPreorder (_≈_ {n}) _≤_
+≤-isPreorder = record
+ { isEquivalence = ≈-isEquivalence
+ ; reflexive = ≤-reflexive
+ ; trans = ≤-trans
+ }
+
+≤-isPartialOrder : IsPartialOrder (_≈_ {n}) _≤_
+≤-isPartialOrder = record
+ { isPreorder = ≤-isPreorder
+ ; antisym = ≤-antisym
+ }
+
+------------------------------------------------------------------------
+-- Bundles
+
+≤-preorder : ∀ {n} → Preorder _ _ _
+≤-preorder {n} = record { isPreorder = ≤-isPreorder {n} }
+
+≤-poset : ∀ {n} → Poset _ _ _
+≤-poset {n} = record { isPartialOrder = ≤-isPartialOrder {n} }
+
+------------------------------------------------------------------------
+-- Properties of wkn₂
+------------------------------------------------------------------------
+-- Algebraic Properties
+
+wkn₂-mono :
+ ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ< i ≟ toℕ< j)} {τ₁ τ₂} →
+ τ₁ ≤ᵗ τ₂ → ctx₁ ≤ ctx₂ → wkn₂ {n} ctx₁ i τ₁ ≤ wkn₂ ctx₂ j τ₂
+wkn₂-mono i j {i≡j} τ₁≤τ₂ (g₂≤g₁ , Γ,Δ₁≤Γ,Δ₂) =
+ s≤s g₂≤g₁ ,
+ pw-insert
+ (inject<! i) (inject<! j)
+ {i≡j |> toWitness |> inject<!-cong |> cong toℕ |> fromWitness}
+ τ₁≤τ₂
+ Γ,Δ₁≤Γ,Δ₂
+
+wkn₂-cong :
+ ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ< i ≟ toℕ< j)} {τ₁ τ₂} →
+ τ₁ ≈ᵗ τ₂ → ctx₁ ≈ ctx₂ → wkn₂ {n} ctx₁ i τ₁ ≈ wkn₂ ctx₂ j τ₂
+wkn₂-cong i j {i≡j} τ₁≈τ₂ ctx₁≈ctx₂ =
+ ≤-antisym
+ (wkn₂-mono i j {i≡j} (≤ᵗ-reflexive τ₁≈τ₂) (≤-reflexive ctx₁≈ctx₂))
+ (wkn₂-mono j i
+ {i≡j |> toWitness |> sym |> fromWitness}
+ (≤ᵗ-reflexive (≈ᵗ-sym τ₁≈τ₂))
+ (≤-reflexive (≈-sym ctx₁≈ctx₂)))
+
+wkn₂-comm :
+ ∀ ctx i j τ τ′ →
+ wkn₂ (wkn₂ {n} ctx (inject<!′ {j = suc i} j) τ′) (suc i) τ ≈ wkn₂ (wkn₂ ctx i τ) (inject<′ j) τ′
+wkn₂-comm (Γ,Δ ⊐ g) i zero τ τ′ = ≈-refl
+wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) (suc j) τ τ′ =
+ wkn₂-cong zero zero ≈ᵗ-refl (wkn₂-comm (Γ,Δ ⊐ g) i j τ τ′)
+
+------------------------------------------------------------------------
+-- Properties of wkn₁
+------------------------------------------------------------------------
+-- Algebraic Properties
+
+wkn₁-mono :
+ ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ> i ≟ toℕ> j)} →
+ ∀ {τ₁ τ₂} → τ₁ ≤ᵗ τ₂ → ctx₁ ≤ ctx₂ → wkn₁ {n} ctx₁ i τ₁ ≤ wkn₁ ctx₂ j τ₂
+wkn₁-mono {_} {_ ⊐ g₁} {_ ⊐ g₂} i j {i≡j} τ₁≤τ₂ (g₂≤g₁ , Γ,Δ₁≤Γ,Δ₂) =
+ (begin
+ toℕ (inject₁ g₂) ≡⟨ toℕ-inject₁ g₂ ⟩
+ toℕ g₂ ≤⟨ g₂≤g₁ ⟩
+ toℕ g₁ ≡˘⟨ toℕ-inject₁ g₁ ⟩
+ toℕ (inject₁ g₁) ∎) ,
+ pw-insert
+ (raise> i) (raise> j)
+ {i≡j |> toWitness |> raise>-cong |> cong toℕ |> fromWitness}
+ τ₁≤τ₂
+ Γ,Δ₁≤Γ,Δ₂
+ where open ≤-Reasoning
+
+wkn₁-cong :
+ ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ> i ≟ toℕ> j)} →
+ ∀ {τ₁ τ₂} → τ₁ ≈ᵗ τ₂ → ctx₁ ≈ ctx₂ → wkn₁ {n} ctx₁ i τ₁ ≈ wkn₁ ctx₂ j τ₂
+wkn₁-cong i j {i≡j} τ₁≈τ₂ ctx₁≈ctx₂ =
+ ≤-antisym
+ (wkn₁-mono i j {i≡j} (≤ᵗ-reflexive τ₁≈τ₂) (≤-reflexive ctx₁≈ctx₂))
+ (wkn₁-mono j i
+ {i≡j |> toWitness |> sym |> fromWitness}
+ (≤ᵗ-reflexive (≈ᵗ-sym τ₁≈τ₂))
+ (≤-reflexive (≈-sym ctx₁≈ctx₂)))
+
+wkn₁-comm :
+ ∀ ctx i j τ τ′ →
+ let g = guard ctx in
+ wkn₁ (wkn₁ {n} ctx (inject>!′ {j = suc> i} j) τ′) (suc> i) τ ≈ wkn₁ (wkn₁ ctx i τ) (inject>′ j) τ′
+-- wkn₁-comm = {!!}
+wkn₁-comm (Γ,Δ ⊐ zero) zero zero τ τ′ = ≈-refl
+wkn₁-comm (Γ,Δ ⊐ zero) (suc i) zero τ τ′ =
+ wkn₁-cong zero zero ≈ᵗ-refl
+ (wkn₁-cong (suc> i) (suc i) {toℕ>-suc> i |> fromWitness } ≈ᵗ-refl ≈-refl)
+wkn₁-comm (_ ∷ Γ,Δ ⊐ zero) (suc i) (suc j) τ τ′ =
+ wkn₁-cong zero zero ≈ᵗ-refl (wkn₁-comm (Γ,Δ ⊐ zero) i j τ τ′)
+wkn₁-comm (_ ∷ Γ,Δ ⊐ suc g) (inj i) (inj j) τ τ′ =
+ wkn₂-cong zero zero ≈ᵗ-refl (wkn₁-comm (Γ,Δ ⊐ g) i j τ τ′)
+
+wkn₁-wkn₂-comm :
+ ∀ ctx i j τ τ′ →
+ wkn₁ (wkn₂ {n} ctx j τ′) (inj i) τ ≈ wkn₂ (wkn₁ ctx i τ) (cast<-inject₁ j) τ′
+wkn₁-wkn₂-comm (Γ,Δ ⊐ g) i zero τ τ′ = ≈-refl
+wkn₁-wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (inj i) (suc j) τ τ′ =
+ wkn₂-cong zero zero ≈ᵗ-refl (wkn₁-wkn₂-comm (Γ,Δ ⊐ g) i j τ τ′)
+
+------------------------------------------------------------------------
+-- Properties of shift
+------------------------------------------------------------------------
+
+shift-mono : ∀ {ctx₁ ctx₂ i j} → toℕ< j ≤ⁿ toℕ< i → ctx₁ ≤ ctx₂ → shift {n} ctx₁ i ≤ shift ctx₂ j
+shift-mono {i = i} {j} j≤i (_ , Γ,Δ₁≤Γ,Δ₂) =
+ (begin
+ toℕ (inject<! j) ≡⟨ toℕ<-inject<! j ⟩
+ toℕ< j ≤⟨ j≤i ⟩
+ toℕ< i ≡˘⟨ toℕ<-inject<! i ⟩
+ toℕ (inject<! i) ∎) ,
+ Γ,Δ₁≤Γ,Δ₂
+ where open ≤-Reasoning
+
+shift-cong :
+ ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ< i ≟ toℕ< j)} → ctx₁ ≈ ctx₂ → shift {n} ctx₁ i ≈ shift ctx₂ j
+shift-cong i j {i≡j} ctx₁≈ctx₂ =
+ ≤-antisym
+ (shift-mono (i≡j |> toWitness |> sym |> ≤ⁿ-reflexive) (≤-reflexive ctx₁≈ctx₂))
+ (shift-mono (i≡j |> toWitness |> ≤ⁿ-reflexive) (≤-reflexive (≈-sym ctx₁≈ctx₂)))
+
+shift-identity : ∀ ctx → shift {n} ctx (strengthen< (guard ctx)) ≈ ctx
+shift-identity (Γ,Δ ⊐ zero) = ≈-refl
+shift-identity (_ ∷ Γ,Δ ⊐ suc g) = wkn₂-cong zero zero ≈ᵗ-refl (shift-identity (Γ,Δ ⊐ g))
+
+shift-trans : ∀ ctx i j → shift (shift {n} ctx i) (inject<!′-inject! j) ≈ shift {n} ctx (inject<!′ j)
+shift-trans (Γ,Δ ⊐ _) _ zero = ≈-refl
+shift-trans (_ ∷ Γ,Δ ⊐ suc g) (suc i) (suc j) =
+ wkn₂-cong zero zero ≈ᵗ-refl (shift-trans (Γ,Δ ⊐ g) i j)
+
+shift-wkn₁-comm :
+ ∀ ctx i j τ →
+ shift (wkn₁ {n} ctx j τ) (cast<-inject₁ i) ≈ wkn₁ (shift ctx i) (cast>-inject<! i j) τ
+shift-wkn₁-comm (Γ,Δ ⊐ zero) zero j τ =
+ wkn₁-cong j (cast>-inject<! zero j) {toℕ>-cast>-inject<! zero j |> fromWitness} ≈ᵗ-refl ≈-refl
+shift-wkn₁-comm (_ ∷ Γ,Δ ⊐ suc g) zero (inj j) τ =
+ wkn₁-cong zero zero ≈ᵗ-refl (shift-wkn₁-comm (Γ,Δ ⊐ g) zero j τ)
+shift-wkn₁-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) (inj j) τ =
+ wkn₂-cong zero zero ≈ᵗ-refl (shift-wkn₁-comm (Γ,Δ ⊐ g) i j τ)
+
+shift-wkn₂-comm :
+ ∀ ctx i j τ →
+ shift (wkn₂ {n} ctx (inject<!′ j) τ) (suc i) ≈ wkn₂ (shift ctx i) (inject<!′-inject! j) τ
+shift-wkn₂-comm (Γ,Δ ⊐ g) i zero τ = ≈-refl
+shift-wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) (suc j) τ =
+ wkn₂-cong zero zero ≈ᵗ-refl (shift-wkn₂-comm (Γ,Δ ⊐ g) i j τ)
+
+shift-wkn₁-wkn₂-comm :
+ ∀ ctx i j τ →
+ shift (wkn₂ {n} ctx i τ) (inject<′ j) ≈ wkn₁ (shift ctx (inject<!′ j)) (reflect i j) τ
+shift-wkn₁-wkn₂-comm (Γ,Δ ⊐ g) zero zero τ = ≈-refl
+shift-wkn₁-wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) zero τ = wkn₁-cong zero zero ≈ᵗ-refl (shift-wkn₁-wkn₂-comm (Γ,Δ ⊐ g) i zero τ)
+shift-wkn₁-wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) (suc j) τ = wkn₂-cong zero zero ≈ᵗ-refl (shift-wkn₁-wkn₂-comm (Γ,Δ ⊐ g) i j τ)
diff --git a/src/Cfe/Fin.agda b/src/Cfe/Fin.agda
new file mode 100644
index 0000000..428e3c0
--- /dev/null
+++ b/src/Cfe/Fin.agda
@@ -0,0 +1,6 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Cfe.Fin where
+
+open import Cfe.Fin.Base public
+open import Cfe.Fin.Properties public
diff --git a/src/Cfe/Fin/Base.agda b/src/Cfe/Fin/Base.agda
new file mode 100644
index 0000000..9a0a4aa
--- /dev/null
+++ b/src/Cfe/Fin/Base.agda
@@ -0,0 +1,92 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Cfe.Fin.Base where
+
+open import Data.Nat using (ℕ; zero; suc)
+open import Data.Fin using (Fin; Fin′; zero; suc; inject₁)
+
+data Fin< : ∀ {n} → Fin n → Set where
+ zero : ∀ {n i} → Fin< {suc n} (suc i)
+ suc : ∀ {n i} → Fin< {n} i → Fin< (suc i)
+
+data Fin<′ : ∀ {n i} → Fin< {n} i → Set where
+ zero : ∀ {n i j} → Fin<′ {suc n} {suc i} (suc j)
+ suc : ∀ {n i j} → Fin<′ {n} {i} j → Fin<′ (suc j)
+
+-- Fin> {n} zero ≡ Fin n
+-- Fin> (suc i) ≡ Fin> i
+
+data Fin> : ∀ {n} → Fin n → Set where
+ zero : ∀ {n} → Fin> {suc n} zero
+ suc : ∀ {n} → Fin> {suc n} zero → Fin> {suc (suc n)} zero
+ inj : ∀ {n i} → Fin> {n} i → Fin> (suc i)
+
+data Fin>′ : ∀ {n i} → Fin> {n} i → Set where
+ zero : ∀ {n j} → Fin>′ {suc (suc n)} {zero} (suc j)
+ suc : ∀ {n j} → Fin>′ {suc n} {zero} j → Fin>′ (suc j)
+ inj : ∀ {n i j} → Fin>′ {n} {i} j → Fin>′ (inj j)
+
+toℕ< : ∀ {n i} → Fin< {n} i → ℕ
+toℕ< zero = 0
+toℕ< (suc j) = suc (toℕ< j)
+
+toℕ> : ∀ {n i} → Fin> {n} i → ℕ
+toℕ> zero = 0
+toℕ> (suc j) = suc (toℕ> j)
+toℕ> (inj j) = suc (toℕ> j)
+
+strengthen< : ∀ {n} → (i : Fin n) → Fin< (suc i)
+strengthen< zero = zero
+strengthen< (suc i) = suc (strengthen< i)
+
+inject<! : ∀ {n i} → Fin< {suc n} i → Fin n
+inject<! {suc _} zero = zero
+inject<! {suc _} (suc j) = suc (inject<! j)
+
+cast<-inject₁ : ∀ {n i} → Fin< {n} i → Fin< (inject₁ i)
+cast<-inject₁ zero = zero
+cast<-inject₁ (suc j) = suc (cast<-inject₁ j)
+
+inject<!′ : ∀ {n i j} → Fin<′ {suc n} {suc i} j → Fin< i
+inject<!′ {suc _} {suc _} zero = zero
+inject<!′ {suc _} {suc _} (suc k) = suc (inject<!′ k)
+
+inject<′ : ∀ {n i j} → Fin<′ {n} {i} j → Fin< i
+inject<′ zero = zero
+inject<′ (suc k) = suc (inject<′ k)
+
+inject<!′-inject! : ∀ {n i j} → Fin<′ {suc n} {i} j → Fin< (inject<! j)
+inject<!′-inject! {suc n} {_} {suc j} zero = zero
+inject<!′-inject! {suc n} {_} {suc j} (suc k) = suc (inject<!′-inject! k)
+
+raise> : ∀ {n i} → Fin> {n} i → Fin n
+raise> {suc _} zero = zero
+raise> {suc _} (suc j) = suc (raise> j)
+raise> {suc _} (inj j) = suc (raise> j)
+
+suc> : ∀ {n i} → Fin> {n} i → Fin> (inject₁ i)
+suc> zero = suc zero
+suc> (suc j) = suc (suc> j)
+suc> (inj j) = inj (suc> j)
+
+inject>!′ : ∀ {n i j} → Fin>′ {suc n} {inject₁ i} j → Fin> {n} i
+inject>!′ {suc _} {zero} zero = zero
+inject>!′ {suc (suc _)} {zero} {suc _} (suc k) = suc (inject>!′ k)
+inject>!′ {suc _} {suc i} (inj k) = inj (inject>!′ k)
+
+inject>′ : ∀ {n i j} → Fin>′ {n} {i} j → Fin> {n} i
+inject>′ zero = zero
+inject>′ (suc k) = suc (inject>′ k)
+inject>′ (inj k) = inj (inject>′ k)
+
+cast>-inject<! : ∀ {n i} (j : Fin< (suc i)) → Fin> {suc n} i → Fin> (inject<! j)
+cast>-inject<! zero zero = zero
+cast>-inject<! zero (suc k) = suc (cast>-inject<! zero k)
+cast>-inject<! {suc n} zero (inj k) = suc (cast>-inject<! zero k)
+cast>-inject<! {suc n} (suc j) (inj k) = inj (cast>-inject<! j k)
+
+reflect :
+ ∀ {n i} → (j : Fin< {suc (suc n)} (suc i)) → (k : Fin<′ (suc j)) → Fin> (inject<! (inject<!′ k))
+reflect zero zero = zero
+reflect {suc n} {suc i} (suc j) zero = suc (reflect j zero)
+reflect {suc n} {suc i} (suc j) (suc k) = inj (reflect j k)
diff --git a/src/Cfe/Fin/Properties.agda b/src/Cfe/Fin/Properties.agda
new file mode 100644
index 0000000..56a2c77
--- /dev/null
+++ b/src/Cfe/Fin/Properties.agda
@@ -0,0 +1,33 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Cfe.Fin.Properties where
+
+open import Cfe.Fin.Base
+open import Data.Fin using (zero; suc; toℕ)
+open import Data.Nat using (suc; pred)
+open import Relation.Binary.PropositionalEquality
+
+inject<!-cong : ∀ {n i j k l} → toℕ< {i = i} k ≡ toℕ< {i = j} l → inject<! {n} k ≡ inject<! l
+inject<!-cong {suc _} {k = zero} {zero} _ = refl
+inject<!-cong {suc _} {k = suc k} {suc l} k≡l = cong suc (inject<!-cong (cong pred k≡l))
+
+raise>-cong : ∀ {n i j k l} → toℕ> {i = i} k ≡ toℕ> {i = j} l → raise> {n} k ≡ raise> l
+raise>-cong {suc _} {k = zero} {zero} _ = refl
+raise>-cong {suc _} {k = suc k} {suc l} k≡l = cong suc (raise>-cong (cong pred k≡l))
+raise>-cong {suc _} {k = suc k} {inj l} k≡l = cong suc (raise>-cong (cong pred k≡l))
+raise>-cong {suc _} {k = inj k} {suc l} k≡l = cong suc (raise>-cong (cong pred k≡l))
+raise>-cong {suc _} {k = inj k} {inj l} k≡l = cong suc (raise>-cong (cong pred k≡l))
+
+toℕ>-suc> : ∀ {n} j → toℕ> (suc> {suc n} j) ≡ toℕ> (suc j)
+toℕ>-suc> zero = refl
+toℕ>-suc> (suc j) = cong suc (toℕ>-suc> j)
+
+toℕ<-inject<! : ∀ {n i} j → toℕ (inject<! {n} {i} j) ≡ toℕ< j
+toℕ<-inject<! {suc n} zero = refl
+toℕ<-inject<! {suc n} (suc j) = cong suc (toℕ<-inject<! j)
+
+toℕ>-cast>-inject<! : ∀ {n i} j k → toℕ> k ≡ toℕ> (cast>-inject<! {n} {i} j k)
+toℕ>-cast>-inject<! zero zero = refl
+toℕ>-cast>-inject<! zero (suc k) = cong suc (toℕ>-cast>-inject<! zero k)
+toℕ>-cast>-inject<! {suc n} zero (inj k) = cong suc (toℕ>-cast>-inject<! zero k)
+toℕ>-cast>-inject<! {suc n} (suc j) (inj k) = cong suc (toℕ>-cast>-inject<! j k)