diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-04-24 13:55:33 +0100 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-04-24 13:55:33 +0100 |
commit | fb37a9b65813666a3963c240a1bc8f6978a4866f (patch) | |
tree | a0f68ee3e5d5874a2ef5f4255c8525fc4ed78471 | |
parent | a5e00b31b873f7deaefa7cb0f60595452f40a57c (diff) |
Modify Fin definitions.
-rw-r--r-- | src/Cfe/Context/Base.agda | 19 | ||||
-rw-r--r-- | src/Cfe/Context/Properties.agda | 244 | ||||
-rw-r--r-- | src/Cfe/Fin/Base.agda | 162 | ||||
-rw-r--r-- | src/Cfe/Fin/Properties.agda | 252 |
4 files changed, 544 insertions, 133 deletions
diff --git a/src/Cfe/Context/Base.agda b/src/Cfe/Context/Base.agda index e152790..9f3a197 100644 --- a/src/Cfe/Context/Base.agda +++ b/src/Cfe/Context/Base.agda @@ -13,7 +13,7 @@ open import Data.Fin.Properties using (toℕ-fromℕ; toℕ-inject₁) open import Data.Nat using (ℕ; suc; _∸_; _+_) open import Data.Nat.Properties using (+-suc) open import Data.Product using (_×_) -open import Data.Vec using (Vec; []; insert) +open import Data.Vec using (Vec; []; insert; remove) open import Data.Vec.Relation.Binary.Pointwise.Inductive using (Pointwise) open import Level renaming (suc to lsuc) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; module ≡-Reasoning) @@ -43,16 +43,25 @@ open Context public -- Insertions wkn₂ : ∀ (ctx : Context n) → Fin< (1+ guard ctx) → Type ℓ ℓ → Context (suc n) -wkn₂ (Γ,Δ ⊐ g) i τ = insert Γ,Δ (inject<! i) τ ⊐ 1+ g +wkn₂ (Γ,Δ ⊐ g) i τ = insert Γ,Δ (inject!< i) τ ⊐ 1+ g -wkn₁ : ∀ (ctx : Context n) → Fin> (guard ctx) → Type ℓ ℓ → Context (suc n) -wkn₁ (Γ,Δ ⊐ g) i τ = insert Γ,Δ (raise> i) τ ⊐ inject₁ g +wkn₁ : ∀ (ctx : Context n) → Fin> (inject₁ (guard ctx)) → Type ℓ ℓ → Context (suc n) +wkn₁ (Γ,Δ ⊐ g) i τ = insert Γ,Δ (raise!> i) τ ⊐ inject₁ g ------------------------------------------------------------------------ -- Modifications shift : ∀ (ctx : Context n) → Fin< (1+ guard ctx) → Context n -shift (Γ,Δ ⊐ _) i = Γ,Δ ⊐ inject<! i +shift (Γ,Δ ⊐ _) i = Γ,Δ ⊐ inject!< i + +------------------------------------------------------------------------ +-- Deletions + +remove₂ : ∀ (ctx : Context (suc n)) → Fin< (guard ctx) → Context n +remove₂ (Γ,Δ ⊐ g) i = remove Γ,Δ (inject!< i) ⊐ predⁱ< i + +remove₁ : ∀ (ctx : Context (suc n)) → Fin> (guard ctx) → Context n +remove₁ (Γ,Δ ⊐ g) i = remove Γ,Δ (raise!> i) ⊐ inject₁ⁱ> i ------------------------------------------------------------------------ -- Relations diff --git a/src/Cfe/Context/Properties.agda b/src/Cfe/Context/Properties.agda index b718518..569b72e 100644 --- a/src/Cfe/Context/Properties.agda +++ b/src/Cfe/Context/Properties.agda @@ -6,7 +6,7 @@ module Cfe.Context.Properties {c ℓ} (over : Setoid c ℓ) where -open import Cfe.Context.Base over as C +open import Cfe.Context.Base over open import Cfe.Fin open import Cfe.Type over using () renaming @@ -21,7 +21,7 @@ open import Cfe.Type over using () ; ≤-antisym to ≤ᵗ-antisym ) open import Data.Fin hiding (pred; _≟_) renaming (_≤_ to _≤ᶠ_) -open import Data.Fin.Properties using (toℕ-inject₁; toℕ<n) +open import Data.Fin.Properties using (toℕ<n; toℕ-injective; toℕ-inject₁) renaming ( ≤-refl to ≤ᶠ-refl ; ≤-reflexive to ≤ᶠ-reflexive @@ -29,12 +29,17 @@ open import Data.Fin.Properties using (toℕ-inject₁; toℕ<n) ; ≤-antisym to ≤ᶠ-antisym ) open import Data.Nat renaming (_≤_ to _≤ⁿ_) -open import Data.Nat.Properties using (module ≤-Reasoning) renaming (≤-reflexive to ≤ⁿ-reflexive) +open import Data.Nat.Properties using (<⇒≤pred; pred-mono; module ≤-Reasoning) + renaming + ( ≤-refl to ≤ⁿ-refl + ; ≤-reflexive to ≤ⁿ-reflexive + ; ≤-trans to ≤ⁿ-trans + ) open import Data.Product -open import Data.Vec using ([]; _∷_; Vec; insert) +open import Data.Vec using ([]; _∷_; Vec; insert; remove) open import Data.Vec.Relation.Binary.Pointwise.Inductive as Pw using ([]; _∷_; Pointwise) open import Function -open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong) +open import Relation.Binary.PropositionalEquality hiding (setoid) open import Relation.Nullary.Decidable using (True; toWitness; fromWitness) private @@ -52,13 +57,22 @@ private pw-antisym antisym (x ∷ xs) (y ∷ ys) = antisym x y ∷ pw-antisym antisym xs ys pw-insert : - ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} {n} {xs : Vec A n} {ys : Vec B n} → + ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} {m n} {xs : Vec A m} {ys : Vec B n} → ∀ i j {i≡j : True (toℕ i ≟ toℕ j)} {x y} → x ∼ y → Pointwise _∼_ xs ys → Pointwise _∼_ (insert xs i x) (insert ys j y) pw-insert zero zero x xs = x ∷ xs pw-insert (suc i) (suc j) {i≡j} x (y ∷ xs) = y ∷ pw-insert i j {i≡j |> toWitness |> cong pred |> fromWitness} x xs + pw-remove : + ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} → + ∀ {m n} {xs : Vec A (suc m)} {ys : Vec B (suc n)} → + ∀ i j {i≡j : True (toℕ i ≟ toℕ j)} → + Pointwise _∼_ xs ys → Pointwise _∼_ (remove xs i) (remove ys j) + pw-remove zero zero (_ ∷ xs) = xs + pw-remove (suc i) (suc j) {i≡j} (x ∷ y ∷ xs) = + x ∷ pw-remove i j {i≡j |> toWitness |> cong pred |> fromWitness} (y ∷ xs) + ------------------------------------------------------------------------ -- Properties of _≈_ ------------------------------------------------------------------------ @@ -142,7 +156,6 @@ setoid {n} = record { isEquivalence = ≈-isEquivalence {n} } ------------------------------------------------------------------------ -- Properties of wkn₂ ------------------------------------------------------------------------ --- Algebraic Properties wkn₂-mono : ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ< i ≟ toℕ< j)} {τ₁ τ₂} → @@ -150,8 +163,8 @@ wkn₂-mono : wkn₂-mono i j {i≡j} τ₁≤τ₂ (g₂≤g₁ , Γ,Δ₁≤Γ,Δ₂) = s≤s g₂≤g₁ , pw-insert - (inject<! i) (inject<! j) - {i≡j |> toWitness |> inject<!-cong |> cong toℕ |> fromWitness} + (inject!< i) (inject!< j) + {i≡j |> toWitness |> inject!<-cong |> fromWitness} τ₁≤τ₂ Γ,Δ₁≤Γ,Δ₂ @@ -166,17 +179,22 @@ wkn₂-cong i j {i≡j} τ₁≈τ₂ ctx₁≈ctx₂ = (≤ᵗ-reflexive (≈ᵗ-sym τ₁≈τ₂)) (≤-reflexive (≈-sym ctx₁≈ctx₂))) +wkn₂-cong-≡ : + ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ< i ≟ toℕ< j)} {τ₁ τ₂} → + τ₁ ≡ τ₂ → ctx₁ ≡ ctx₂ → wkn₂ {n} ctx₁ i τ₁ ≡ wkn₂ ctx₂ j τ₂ +wkn₂-cong-≡ {ctx₁ = Γ,Δ ⊐ g} i j {i≡j} {τ} refl refl = + i≡j |> toWitness |> inject!<-cong |> toℕ-injective |> cong (λ x → insert Γ,Δ x τ ⊐ suc g) + wkn₂-comm : ∀ ctx i j τ τ′ → - wkn₂ (wkn₂ {n} ctx (inject<!′ {j = suc i} j) τ′) (suc i) τ ≈ wkn₂ (wkn₂ ctx i τ) (inject<′ j) τ′ -wkn₂-comm (Γ,Δ ⊐ g) i zero τ τ′ = ≈-refl + wkn₂ (wkn₂ {n} ctx (inject!<< {j = suc i} j) τ′) (suc i) τ ≡ wkn₂ (wkn₂ ctx i τ) (inject<< j) τ′ +wkn₂-comm (Γ,Δ ⊐ g) i zero τ τ′ = refl wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) (suc j) τ τ′ = - wkn₂-cong zero zero ≈ᵗ-refl (wkn₂-comm (Γ,Δ ⊐ g) i j τ τ′) + wkn₂-cong-≡ zero zero refl (wkn₂-comm (Γ,Δ ⊐ g) i j τ τ′) ------------------------------------------------------------------------ -- Properties of wkn₁ ------------------------------------------------------------------------ --- Algebraic Properties wkn₁-mono : ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ> i ≟ toℕ> j)} → @@ -188,15 +206,15 @@ wkn₁-mono {_} {_ ⊐ g₁} {_ ⊐ g₂} i j {i≡j} τ₁≤τ₂ (g₂≤g₁ toℕ g₁ ≡˘⟨ toℕ-inject₁ g₁ ⟩ toℕ (inject₁ g₁) ∎) , pw-insert - (raise> i) (raise> j) - {i≡j |> toWitness |> raise>-cong |> cong toℕ |> fromWitness} + (raise!> i) (raise!> j) + {i≡j |> toWitness |> raise!>-cong |> fromWitness} τ₁≤τ₂ Γ,Δ₁≤Γ,Δ₂ where open ≤-Reasoning wkn₁-cong : - ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ> i ≟ toℕ> j)} → - ∀ {τ₁ τ₂} → τ₁ ≈ᵗ τ₂ → ctx₁ ≈ ctx₂ → wkn₁ {n} ctx₁ i τ₁ ≈ wkn₁ ctx₂ j τ₂ + ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ> i ≟ toℕ> j)} {τ₁ τ₂} → + τ₁ ≈ᵗ τ₂ → ctx₁ ≈ ctx₂ → wkn₁ {n} ctx₁ i τ₁ ≈ wkn₁ ctx₂ j τ₂ wkn₁-cong i j {i≡j} τ₁≈τ₂ ctx₁≈ctx₂ = ≤-antisym (wkn₁-mono i j {i≡j} (≤ᵗ-reflexive τ₁≈τ₂) (≤-reflexive ctx₁≈ctx₂)) @@ -205,40 +223,38 @@ wkn₁-cong i j {i≡j} τ₁≈τ₂ ctx₁≈ctx₂ = (≤ᵗ-reflexive (≈ᵗ-sym τ₁≈τ₂)) (≤-reflexive (≈-sym ctx₁≈ctx₂))) +wkn₁-cong-≡ : + ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ> i ≟ toℕ> j)} {τ₁ τ₂} → + τ₁ ≡ τ₂ → ctx₁ ≡ ctx₂ → wkn₁ {n} ctx₁ i τ₁ ≡ wkn₁ ctx₂ j τ₂ +wkn₁-cong-≡ {ctx₁ = Γ,Δ ⊐ g} i j {i≡j} {τ} refl refl = + i≡j |> toWitness |> raise!>-cong |> toℕ-injective |> cong (λ x → insert Γ,Δ x τ ⊐ inject₁ g) + wkn₁-comm : ∀ ctx i j τ τ′ → - let g = guard ctx in - wkn₁ (wkn₁ {n} ctx (inject>!′ {j = suc> i} j) τ′) (suc> i) τ ≈ wkn₁ (wkn₁ ctx i τ) (inject>′ j) τ′ --- wkn₁-comm = {!!} -wkn₁-comm (Γ,Δ ⊐ zero) zero zero τ τ′ = ≈-refl + wkn₁ (wkn₁ {n} ctx (inject!>< {j = suc> i} j) τ′) (suc> i) τ ≡ wkn₁ (wkn₁ ctx i τ) (inject>< j) τ′ +wkn₁-comm (Γ,Δ ⊐ zero) zero zero τ τ′ = refl wkn₁-comm (Γ,Δ ⊐ zero) (suc i) zero τ τ′ = - wkn₁-cong zero zero ≈ᵗ-refl - (wkn₁-cong (suc> i) (suc i) {toℕ>-suc> i |> fromWitness } ≈ᵗ-refl ≈-refl) + wkn₁-cong-≡ zero zero refl + (wkn₁-cong-≡ (suc> i) (suc i) {toℕ-suc> i |> fromWitness } refl refl) wkn₁-comm (_ ∷ Γ,Δ ⊐ zero) (suc i) (suc j) τ τ′ = - wkn₁-cong zero zero ≈ᵗ-refl (wkn₁-comm (Γ,Δ ⊐ zero) i j τ τ′) + wkn₁-cong-≡ zero zero refl (wkn₁-comm (Γ,Δ ⊐ zero) i j τ τ′) wkn₁-comm (_ ∷ Γ,Δ ⊐ suc g) (inj i) (inj j) τ τ′ = - wkn₂-cong zero zero ≈ᵗ-refl (wkn₁-comm (Γ,Δ ⊐ g) i j τ τ′) + wkn₂-cong-≡ zero zero refl (wkn₁-comm (Γ,Δ ⊐ g) i j τ τ′) wkn₁-wkn₂-comm : ∀ ctx i j τ τ′ → - wkn₁ (wkn₂ {n} ctx j τ′) (inj i) τ ≈ wkn₂ (wkn₁ ctx i τ) (cast<-inject₁ j) τ′ -wkn₁-wkn₂-comm (Γ,Δ ⊐ g) i zero τ τ′ = ≈-refl + wkn₁ (wkn₂ {n} ctx j τ′) (inj i) τ ≡ + wkn₂ (wkn₁ ctx i τ) (cast< (guard ctx |> toℕ-inject₁ |> cong suc |> sym) j) τ′ +wkn₁-wkn₂-comm (Γ,Δ ⊐ g) i zero τ τ′ = refl wkn₁-wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (inj i) (suc j) τ τ′ = - wkn₂-cong zero zero ≈ᵗ-refl (wkn₁-wkn₂-comm (Γ,Δ ⊐ g) i j τ τ′) + wkn₂-cong-≡ zero zero refl (wkn₁-wkn₂-comm (Γ,Δ ⊐ g) i j τ τ′) ------------------------------------------------------------------------ -- Properties of shift ------------------------------------------------------------------------ shift-mono : ∀ {ctx₁ ctx₂ i j} → toℕ< j ≤ⁿ toℕ< i → ctx₁ ≤ ctx₂ → shift {n} ctx₁ i ≤ shift ctx₂ j -shift-mono {i = i} {j} j≤i (_ , Γ,Δ₁≤Γ,Δ₂) = - (begin - toℕ (inject<! j) ≡⟨ toℕ<-inject<! j ⟩ - toℕ< j ≤⟨ j≤i ⟩ - toℕ< i ≡˘⟨ toℕ<-inject<! i ⟩ - toℕ (inject<! i) ∎) , - Γ,Δ₁≤Γ,Δ₂ - where open ≤-Reasoning +shift-mono {i = i} {j} j≤i (_ , Γ,Δ₁≤Γ,Δ₂) = inject!<-mono j≤i , Γ,Δ₁≤Γ,Δ₂ shift-cong : ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ< i ≟ toℕ< j)} → ctx₁ ≈ ctx₂ → shift {n} ctx₁ i ≈ shift ctx₂ j @@ -247,35 +263,157 @@ shift-cong i j {i≡j} ctx₁≈ctx₂ = (shift-mono (i≡j |> toWitness |> sym |> ≤ⁿ-reflexive) (≤-reflexive ctx₁≈ctx₂)) (shift-mono (i≡j |> toWitness |> ≤ⁿ-reflexive) (≤-reflexive (≈-sym ctx₁≈ctx₂))) -shift-identity : ∀ ctx → shift {n} ctx (strengthen< (guard ctx)) ≈ ctx -shift-identity (Γ,Δ ⊐ zero) = ≈-refl -shift-identity (_ ∷ Γ,Δ ⊐ suc g) = wkn₂-cong zero zero ≈ᵗ-refl (shift-identity (Γ,Δ ⊐ g)) +shift-cong-≡ : + ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ< i ≟ toℕ< j)} → ctx₁ ≡ ctx₂ → shift {n} ctx₁ i ≡ shift ctx₂ j +shift-cong-≡ {ctx₁ = Γ,Δ ⊐ _} i j {i≡j} refl = + i≡j |> toWitness |> inject!<-cong |> toℕ-injective |> cong (Γ,Δ ⊐_) -shift-trans : ∀ ctx i j → shift (shift {n} ctx i) (inject<!′-inject! j) ≈ shift {n} ctx (inject<!′ j) -shift-trans (Γ,Δ ⊐ _) _ zero = ≈-refl +shift-identity : ∀ ctx → shift {n} ctx (strengthen< (guard ctx)) ≡ ctx +shift-identity (Γ,Δ ⊐ zero) = refl +shift-identity (_ ∷ Γ,Δ ⊐ suc g) = wkn₂-cong-≡ zero zero refl (shift-identity (Γ,Δ ⊐ g)) + +shift-trans : + ∀ ctx i j → + shift (shift {n} ctx i) (inject!<< (cast<< (strengthen<-inject!< i |> cong suc |> sym) j)) ≡ + shift ctx (inject!<< j) +shift-trans (Γ,Δ ⊐ _) _ zero = refl shift-trans (_ ∷ Γ,Δ ⊐ suc g) (suc i) (suc j) = - wkn₂-cong zero zero ≈ᵗ-refl (shift-trans (Γ,Δ ⊐ g) i j) + wkn₂-cong-≡ zero zero refl (shift-trans (Γ,Δ ⊐ g) i j) shift-wkn₁-comm : ∀ ctx i j τ → - shift (wkn₁ {n} ctx j τ) (cast<-inject₁ i) ≈ wkn₁ (shift ctx i) (cast>-inject<! i j) τ + let i≤g = ≤ⁿ-trans (≤ⁿ-reflexive (toℕ-inject!< i)) (pred-mono (toℕ<<i i)) in + shift (wkn₁ {n} ctx j τ) (cast< (toℕ-inject₁ (guard ctx) |> cong suc |> sym) i) ≡ + wkn₁ (shift ctx i) (cast> (inject₁-mono i≤g) j) τ shift-wkn₁-comm (Γ,Δ ⊐ zero) zero j τ = - wkn₁-cong j (cast>-inject<! zero j) {toℕ>-cast>-inject<! zero j |> fromWitness} ≈ᵗ-refl ≈-refl + wkn₁-cong-≡ j (cast> ≤ⁿ-refl j) {toℕ-cast> ≤ⁿ-refl j |> sym |> fromWitness} refl refl shift-wkn₁-comm (_ ∷ Γ,Δ ⊐ suc g) zero (inj j) τ = - wkn₁-cong zero zero ≈ᵗ-refl (shift-wkn₁-comm (Γ,Δ ⊐ g) zero j τ) + wkn₁-cong-≡ zero zero refl (shift-wkn₁-comm (Γ,Δ ⊐ g) zero j τ) shift-wkn₁-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) (inj j) τ = - wkn₂-cong zero zero ≈ᵗ-refl (shift-wkn₁-comm (Γ,Δ ⊐ g) i j τ) + wkn₂-cong-≡ zero zero refl (shift-wkn₁-comm (Γ,Δ ⊐ g) i j τ) shift-wkn₂-comm : ∀ ctx i j τ → - shift (wkn₂ {n} ctx (inject<!′ j) τ) (suc i) ≈ wkn₂ (shift ctx i) (inject<!′-inject! j) τ -shift-wkn₂-comm (Γ,Δ ⊐ g) i zero τ = ≈-refl + shift (wkn₂ {n} ctx (inject!<< j) τ) (suc i) ≡ + wkn₂ (shift ctx i) (inject!<< (cast<< (strengthen<-inject!< i |> cong suc |> sym) j)) τ +shift-wkn₂-comm (Γ,Δ ⊐ g) i zero τ = refl shift-wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) (suc j) τ = - wkn₂-cong zero zero ≈ᵗ-refl (shift-wkn₂-comm (Γ,Δ ⊐ g) i j τ) + wkn₂-cong-≡ zero zero refl (shift-wkn₂-comm (Γ,Δ ⊐ g) i j τ) shift-wkn₁-wkn₂-comm : ∀ ctx i j τ → - shift (wkn₂ {n} ctx i τ) (inject<′ j) ≈ wkn₁ (shift ctx (inject<!′ j)) (reflect i j) τ -shift-wkn₁-wkn₂-comm (Γ,Δ ⊐ g) zero zero τ = ≈-refl -shift-wkn₁-wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) zero τ = wkn₁-cong zero zero ≈ᵗ-refl (shift-wkn₁-wkn₂-comm (Γ,Δ ⊐ g) i zero τ) -shift-wkn₁-wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) (suc j) τ = wkn₂-cong zero zero ≈ᵗ-refl (shift-wkn₁-wkn₂-comm (Γ,Δ ⊐ g) i j τ) + shift (wkn₂ {n} ctx i τ) (inject<< j) ≡ wkn₁ (shift ctx (inject!<< j)) (reflect! i j) τ +shift-wkn₁-wkn₂-comm (Γ,Δ ⊐ g) zero zero τ = refl +shift-wkn₁-wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) zero τ = + wkn₁-cong-≡ zero zero refl (shift-wkn₁-wkn₂-comm (Γ,Δ ⊐ g) i zero τ) +shift-wkn₁-wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) (suc j) τ = + wkn₂-cong-≡ zero zero refl (shift-wkn₁-wkn₂-comm (Γ,Δ ⊐ g) i j τ) + +------------------------------------------------------------------------ +-- Properties of remove₂ +------------------------------------------------------------------------ + +remove₂-mono : + ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ< i ≟ toℕ< j)} → + ctx₁ ≤ ctx₂ → remove₂ {n} ctx₁ i ≤ remove₂ ctx₂ j +remove₂-mono i j {i≡j} (g₂≤g₁ , Γ,Δ₁≤Γ,Δ₂) = + predⁱ<-mono j i g₂≤g₁ , + pw-remove (inject!< i) (inject!< j) {i≡j |> toWitness |> inject!<-cong |> fromWitness} Γ,Δ₁≤Γ,Δ₂ + +remove₂-cong : + ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ< i ≟ toℕ< j)} → + ctx₁ ≈ ctx₂ → remove₂ {n} ctx₁ i ≈ remove₂ ctx₂ j +remove₂-cong i j {i≡j} ctx₁≈ctx₂ = + ≤-antisym + (remove₂-mono i j {i≡j} (≤-reflexive ctx₁≈ctx₂)) + (remove₂-mono j i {i≡j |> toWitness |> sym |> fromWitness} (≤-reflexive (≈-sym ctx₁≈ctx₂))) + +remove₂-cong-≡ : + ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ< i ≟ toℕ< j)} → + ctx₁ ≡ ctx₂ → remove₂ {n} ctx₁ i ≡ remove₂ ctx₂ j +remove₂-cong-≡ {ctx₁ = Γ,Δ ⊐ _} i j {i≡j} refl = + i≡j |> toWitness |> λ i≡j → + cong₂ + _⊐_ + (i≡j |> inject!<-cong |> toℕ-injective |> cong (remove Γ,Δ)) + (predⁱ<-cong i j refl |> toℕ-injective) + +remove₂-wkn₂-comm : + ∀ ctx i j τ → + remove₂ (wkn₂ {suc n} ctx (inject<< {j = suc i} j) τ) (suc i) ≡ + wkn₂ (remove₂ ctx i) (cast< (sym (toℕ-predⁱ< i)) (inject!<< j)) τ +remove₂-wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) i zero τ = refl +remove₂-wkn₂-comm (_ ∷ τ′ ∷ Γ,Δ ⊐ suc (suc g)) (suc i) (suc zero) τ = refl +remove₂-wkn₂-comm (_ ∷ τ′ ∷ Γ,Δ ⊐ suc (suc g)) (suc i) (suc (suc j)) τ = + wkn₂-cong-≡ zero zero refl (remove₂-wkn₂-comm (τ′ ∷ Γ,Δ ⊐ suc g) i (suc j) τ) + +------------------------------------------------------------------------ +-- Properties of remove₁ +------------------------------------------------------------------------ + +remove₁-mono : + ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ> i ≟ toℕ> j)} → + ctx₁ ≤ ctx₂ → remove₁ {n} ctx₁ i ≤ remove₁ ctx₂ j +remove₁-mono i j {i≡j} (g₂≤g₁ , Γ,Δ₁≤Γ,Δ₂) = + inject₁ⁱ>-mono j i g₂≤g₁ , + pw-remove (raise!> i) (raise!> j) {i≡j |> toWitness |> raise!>-cong |> fromWitness} Γ,Δ₁≤Γ,Δ₂ + +remove₁-cong : + ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ> i ≟ toℕ> j)} → + ctx₁ ≈ ctx₂ → remove₁ {n} ctx₁ i ≈ remove₁ ctx₂ j +remove₁-cong i j {i≡j} ctx₁≈ctx₂ = + ≤-antisym + (remove₁-mono i j {i≡j} (≤-reflexive ctx₁≈ctx₂)) + (remove₁-mono j i {i≡j |> toWitness |> sym |> fromWitness} (≤-reflexive (≈-sym ctx₁≈ctx₂))) + +remove₁-cong-≡ : + ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ> i ≟ toℕ> j)} → + ctx₁ ≡ ctx₂ → remove₁ {n} ctx₁ i ≡ remove₁ ctx₂ j +remove₁-cong-≡ {ctx₁ = Γ,Δ ⊐ _} i j {i≡j} refl = + i≡j |> toWitness |> λ i≡j → + cong₂ + _⊐_ + (i≡j |> raise!>-cong |> toℕ-injective |> cong (remove Γ,Δ)) + (inject₁ⁱ>-cong i j refl |> toℕ-injective) + +remove₁-wkn₂-comm : + ∀ ctx i j τ → + remove₁ (wkn₂ {suc n} ctx j τ) (inj i) ≡ + wkn₂ (remove₁ ctx i) (cast< (toℕ-inject₁ⁱ> i |> cong suc |> sym) j) τ +remove₁-wkn₂-comm (_ ∷ Γ,Δ ⊐ g) _ zero τ = refl +remove₁-wkn₂-comm (_ ∷ _ ∷ Γ,Δ ⊐ suc zero) (inj i) (suc zero) τ = refl +remove₁-wkn₂-comm (_ ∷ _ ∷ Γ,Δ ⊐ suc (suc g)) (inj i) (suc zero) τ = refl +remove₁-wkn₂-comm (_ ∷ τ′ ∷ Γ,Δ ⊐ suc (suc g)) (inj i) (suc (suc j)) τ = + wkn₂-cong-≡ zero zero refl (remove₁-wkn₂-comm ((τ′ ∷ Γ,Δ) ⊐ suc g) i (suc j) τ) + +remove₁-shift-comm : + ∀ ctx i j → + remove₁ (shift ctx i) (cast> (≤ⁿ-trans (≤ⁿ-reflexive (toℕ-inject!< i)) (<⇒≤pred (toℕ<<i i))) j) ≡ + shift (remove₁ {n} ctx j) (cast< (toℕ-inject₁ⁱ> j |> cong suc |> sym) i) +remove₁-shift-comm (Γ,Δ ⊐ g) zero zero = refl +remove₁-shift-comm (Γ,Δ ⊐ g) zero (suc j) = + toℕ-cast> z≤n j |> raise!>-cong |> toℕ-injective |> cong ((_⊐ zero) ∘ remove Γ,Δ ∘ suc) +remove₁-shift-comm (Γ,Δ ⊐ g) zero (inj j) = + toℕ-cast> z≤n j |> raise!>-cong |> toℕ-injective |> cong ((_⊐ zero) ∘ remove Γ,Δ ∘ suc) +remove₁-shift-comm (_ ∷ τ′ ∷ Γ,Δ ⊐ suc zero) (suc i) (inj j) = + wkn₂-cong-≡ zero zero refl (remove₁-shift-comm (τ′ ∷ Γ,Δ ⊐ zero) i j) +remove₁-shift-comm (_ ∷ τ′ ∷ Γ,Δ ⊐ suc (suc g)) (suc i) (inj j) = + wkn₂-cong-≡ zero zero refl (remove₁-shift-comm (τ′ ∷ Γ,Δ ⊐ suc g) i j) + +-- remove₁ (shift ctx zero) (reflect i zero) ≡ shift (remove ctx i) zero +remove₁-remove₂-shift-comm : + ∀ ctx i j → + let eq = inject-square j |> cong toℕ |> sym |> ≤ⁿ-reflexive in + remove₁ (shift {suc n} ctx (inject<< j)) (cast> eq (reflect i j)) ≡ + shift (remove₂ ctx i) (cast< (sym (toℕ-predⁱ< i)) (inject!<< j)) +remove₁-remove₂-shift-comm (Γ,Δ ⊐ suc g) zero zero = refl +remove₁-remove₂-shift-comm (Γ,Δ ⊐ suc (suc g)) (suc i) zero = + cong ((_⊐ zero) ∘ remove Γ,Δ ∘ suc) (toℕ-injective (begin + toℕ (raise!> (cast> _ (reflect i zero))) ≡⟨ toℕ-raise!> (cast> _ (reflect i zero)) ⟩ + toℕ> (cast> _ (reflect i zero)) ≡⟨ toℕ-cast> z≤n (reflect i zero) ⟩ + toℕ> (reflect i zero) ≡⟨ toℕ-reflect i zero ⟩ + toℕ< i ≡˘⟨ toℕ-inject!< i ⟩ + toℕ (inject!< i) ∎)) + where open ≡-Reasoning +remove₁-remove₂-shift-comm (_ ∷ τ′ ∷ Γ,Δ ⊐ suc (suc g)) (suc i) (suc j) = + wkn₂-cong-≡ zero zero refl (remove₁-remove₂-shift-comm (τ′ ∷ Γ,Δ ⊐ suc g) i j) diff --git a/src/Cfe/Fin/Base.agda b/src/Cfe/Fin/Base.agda index 9a0a4aa..f357048 100644 --- a/src/Cfe/Fin/Base.agda +++ b/src/Cfe/Fin/Base.agda @@ -2,29 +2,33 @@ module Cfe.Fin.Base where -open import Data.Nat using (ℕ; zero; suc) -open import Data.Fin using (Fin; Fin′; zero; suc; inject₁) +open import Data.Empty using (⊥-elim) +open import Data.Nat using (ℕ; zero; suc; pred; z≤n) +open import Data.Nat.Properties using (pred-mono) +open import Data.Fin using (Fin; zero; suc; toℕ; inject₁; _≤_) +open import Function using (_∘_) +open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; cong) data Fin< : ∀ {n} → Fin n → Set where zero : ∀ {n i} → Fin< {suc n} (suc i) suc : ∀ {n i} → Fin< {n} i → Fin< (suc i) -data Fin<′ : ∀ {n i} → Fin< {n} i → Set where - zero : ∀ {n i j} → Fin<′ {suc n} {suc i} (suc j) - suc : ∀ {n i j} → Fin<′ {n} {i} j → Fin<′ (suc j) - --- Fin> {n} zero ≡ Fin n --- Fin> (suc i) ≡ Fin> i +data Fin<< : ∀ {n i} → Fin< {n} i → Set where + zero : ∀ {n i j} → Fin<< {suc n} {suc i} (suc j) + suc : ∀ {n i j} → Fin<< {n} {i} j → Fin<< (suc j) data Fin> : ∀ {n} → Fin n → Set where - zero : ∀ {n} → Fin> {suc n} zero + zero : ∀ {n} → Fin> {suc (suc n)} zero suc : ∀ {n} → Fin> {suc n} zero → Fin> {suc (suc n)} zero inj : ∀ {n i} → Fin> {n} i → Fin> (suc i) -data Fin>′ : ∀ {n i} → Fin> {n} i → Set where - zero : ∀ {n j} → Fin>′ {suc (suc n)} {zero} (suc j) - suc : ∀ {n j} → Fin>′ {suc n} {zero} j → Fin>′ (suc j) - inj : ∀ {n i j} → Fin>′ {n} {i} j → Fin>′ (inj j) +data Fin>< : ∀ {n i} → Fin> {n} i → Set where + zero : ∀ {n j} → Fin>< {suc (suc n)} {zero} (suc j) + suc : ∀ {n j} → Fin>< {suc n} {zero} j → Fin>< (suc j) + inj : ∀ {n i j} → Fin>< {n} {i} j → Fin>< (inj j) + +------------------------------------------------------------------------ +-- Coversions to ℕ toℕ< : ∀ {n i} → Fin< {n} i → ℕ toℕ< zero = 0 @@ -35,58 +39,118 @@ toℕ> zero = 0 toℕ> (suc j) = suc (toℕ> j) toℕ> (inj j) = suc (toℕ> j) +------------------------------------------------------------------------ +-- Upwards injections + +inject!< : ∀ {n i} → Fin< {suc n} i → Fin n +inject!< {suc _} zero = zero +inject!< {suc _} (suc j) = suc (inject!< j) + +inject< : ∀ {n i} → Fin< {n} i → Fin n +inject< zero = zero +inject< (suc j) = suc (inject< j) + +inject₁< : ∀ {n i} → Fin< {n} i → Fin< (suc i) +inject₁< zero = zero +inject₁< (suc j) = suc (inject₁< j) + +inject!<< : ∀ {n i j} → Fin<< {suc n} {suc i} j → Fin< i +inject!<< {suc _} {suc _} zero = zero +inject!<< {suc _} {suc _} (suc k) = suc (inject!<< k) + +inject<< : ∀ {n i j} → Fin<< {n} {i} j → Fin< i +inject<< zero = zero +inject<< (suc k) = suc (inject<< k) + +inject!>< : ∀ {n i j} → Fin>< {suc n} {inject₁ i} j → Fin> i +inject!>< {suc (suc _)} {zero} {suc j} zero = zero +inject!>< {suc (suc _)} {zero} {suc j} (suc k) = suc (inject!>< k) +inject!>< {suc (suc _)} {suc _} {inj j} (inj k) = inj (inject!>< k) + +inject>< : ∀ {n i j} → Fin>< {n} {i} j → Fin> {n} i +inject>< zero = zero +inject>< (suc k) = suc (inject>< k) +inject>< (inj k) = inj (inject>< k) + +------------------------------------------------------------------------ +-- Downwards injections + strengthen< : ∀ {n} → (i : Fin n) → Fin< (suc i) strengthen< zero = zero strengthen< (suc i) = suc (strengthen< i) -inject<! : ∀ {n i} → Fin< {suc n} i → Fin n -inject<! {suc _} zero = zero -inject<! {suc _} (suc j) = suc (inject<! j) +------------------------------------------------------------------------ +-- Casts -cast<-inject₁ : ∀ {n i} → Fin< {n} i → Fin< (inject₁ i) -cast<-inject₁ zero = zero -cast<-inject₁ (suc j) = suc (cast<-inject₁ j) +cast< : ∀ {m n i j} → .(toℕ i ≡ toℕ j) → Fin< {m} i → Fin< {n} j +cast< {i = suc _} {suc _} _ zero = zero +cast< {i = suc _} {suc _} i≡j (suc k) = suc (cast< (cong pred i≡j) k) -inject<!′ : ∀ {n i j} → Fin<′ {suc n} {suc i} j → Fin< i -inject<!′ {suc _} {suc _} zero = zero -inject<!′ {suc _} {suc _} (suc k) = suc (inject<!′ k) +cast<< : ∀ {m n i j k l} → .(toℕ< k ≡ toℕ< l) → Fin<< {m} {i} k → Fin<< {n} {j} l +cast<< {k = suc _} {suc _} _ zero = zero +cast<< {k = suc _} {suc _} k≡l (suc x) = suc (cast<< (cong pred k≡l) x) -inject<′ : ∀ {n i j} → Fin<′ {n} {i} j → Fin< i -inject<′ zero = zero -inject<′ (suc k) = suc (inject<′ k) +cast> : ∀ {n i j} → .(j ≤ i) → Fin> {n} i → Fin> j +cast> {_} {zero} {zero} j≤i zero = zero +cast> {_} {zero} {zero} j≤i (suc k) = suc (cast> j≤i k) +cast> {suc (suc _)} {suc i} {zero} j≤i (inj k) = suc (cast> z≤n k) +cast> {suc (suc _)} {suc i} {suc j} j≤i (inj k) = inj (cast> (pred-mono j≤i) k) -inject<!′-inject! : ∀ {n i j} → Fin<′ {suc n} {i} j → Fin< (inject<! j) -inject<!′-inject! {suc n} {_} {suc j} zero = zero -inject<!′-inject! {suc n} {_} {suc j} (suc k) = suc (inject<!′-inject! k) +------------------------------------------------------------------------ +-- Additions -raise> : ∀ {n i} → Fin> {n} i → Fin n -raise> {suc _} zero = zero -raise> {suc _} (suc j) = suc (raise> j) -raise> {suc _} (inj j) = suc (raise> j) +raise!> : ∀ {n i} → Fin> {suc n} i → Fin n +raise!> {suc _} zero = zero +raise!> {suc _} (suc j) = suc (raise!> j) +raise!> {suc _} (inj j) = suc (raise!> j) suc> : ∀ {n i} → Fin> {n} i → Fin> (inject₁ i) suc> zero = suc zero suc> (suc j) = suc (suc> j) suc> (inj j) = inj (suc> j) -inject>!′ : ∀ {n i j} → Fin>′ {suc n} {inject₁ i} j → Fin> {n} i -inject>!′ {suc _} {zero} zero = zero -inject>!′ {suc (suc _)} {zero} {suc _} (suc k) = suc (inject>!′ k) -inject>!′ {suc _} {suc i} (inj k) = inj (inject>!′ k) +------------------------------------------------------------------------ +-- Operations on the index + +-- predⁱ< {i = "i"} _ = "pred i" + +predⁱ< : ∀ {n i} → Fin< {suc n} i → Fin n +predⁱ< {i = suc i} _ = i + +-- inject₁ⁱ> {i = "i"} _ = "i" + +inject₁ⁱ> : ∀ {n i} → Fin> {suc n} i → Fin n +inject₁ⁱ> zero = zero +inject₁ⁱ> (suc _) = zero +inject₁ⁱ> {suc _} (inj j) = suc (inject₁ⁱ> j) + +------------------------------------------------------------------------ +-- Operations + +punchIn> : ∀ {n i} → Fin> {suc n} (inject₁ i) → Fin> i → Fin> (inject₁ i) +punchIn> {i = zero} zero k = suc k +punchIn> {i = zero} (suc j) zero = zero +punchIn> {i = zero} (suc j) (suc k) = suc (punchIn> j k) +punchIn> {i = suc _} (inj j) (inj k) = inj (punchIn> j k) + +punchOut> : ∀ {n i j k} → raise!> {n} {i} j ≢ raise!> {n} {i} k → Fin> (inject₁ⁱ> j) +punchOut> {j = zero} {zero} j≢k = ⊥-elim (j≢k refl) +punchOut> {j = zero} {suc k} j≢k = k +punchOut> {suc (suc _)} {j = suc j} {zero} j≢k = zero +punchOut> {suc (suc _)} {j = suc zero} {suc k} j≢k = suc (punchOut> (j≢k ∘ cong suc)) +punchOut> {suc (suc _)} {j = suc (suc j)} {suc k} j≢k = suc (punchOut> {j = suc j} (j≢k ∘ cong suc)) +punchOut> {suc _} {j = inj j} {inj k} j≢k = inj (punchOut> (j≢k ∘ cong suc)) -inject>′ : ∀ {n i j} → Fin>′ {n} {i} j → Fin> {n} i -inject>′ zero = zero -inject>′ (suc k) = suc (inject>′ k) -inject>′ (inj k) = inj (inject>′ k) +-- reflect "j" _ ≡ "j" -cast>-inject<! : ∀ {n i} (j : Fin< (suc i)) → Fin> {suc n} i → Fin> (inject<! j) -cast>-inject<! zero zero = zero -cast>-inject<! zero (suc k) = suc (cast>-inject<! zero k) -cast>-inject<! {suc n} zero (inj k) = suc (cast>-inject<! zero k) -cast>-inject<! {suc n} (suc j) (inj k) = inj (cast>-inject<! j k) +reflect! : + ∀ {n i} → (j : Fin< (suc {n} i)) → (k : Fin<< (suc j)) → Fin> (inject₁ (inject!< (inject!<< k))) +reflect! {suc _} zero zero = zero +reflect! {suc (suc _)} {suc _} (suc j) zero = suc (reflect! j zero) +reflect! {suc (suc _)} {suc _} (suc j) (suc k) = inj (reflect! j k) reflect : - ∀ {n i} → (j : Fin< {suc (suc n)} (suc i)) → (k : Fin<′ (suc j)) → Fin> (inject<! (inject<!′ k)) -reflect zero zero = zero -reflect {suc n} {suc i} (suc j) zero = suc (reflect j zero) -reflect {suc n} {suc i} (suc j) (suc k) = inj (reflect j k) + ∀ {n i} → (j : Fin< {n} i) → (k : Fin<< (suc j)) → Fin> (inject< (inject!<< k)) +reflect {suc (suc n)} zero zero = zero +reflect {_} {suc (suc _)} (suc j) zero = suc (reflect j zero) +reflect {_} {suc (suc _)} (suc j) (suc k) = inj (reflect j k) diff --git a/src/Cfe/Fin/Properties.agda b/src/Cfe/Fin/Properties.agda index 56a2c77..c07aa56 100644 --- a/src/Cfe/Fin/Properties.agda +++ b/src/Cfe/Fin/Properties.agda @@ -3,31 +3,231 @@ module Cfe.Fin.Properties where open import Cfe.Fin.Base -open import Data.Fin using (zero; suc; toℕ) -open import Data.Nat using (suc; pred) +open import Data.Empty using (⊥-elim) +open import Data.Fin using (zero; suc; toℕ; punchIn; punchOut; inject₁) +open import Data.Nat using (suc; pred; _≤_; _<_; _≥_; z≤n; s≤s) +open import Data.Nat.Properties using (suc-injective; pred-mono; module ≤-Reasoning) +open import Function using (_∘_) open import Relation.Binary.PropositionalEquality -inject<!-cong : ∀ {n i j k l} → toℕ< {i = i} k ≡ toℕ< {i = j} l → inject<! {n} k ≡ inject<! l -inject<!-cong {suc _} {k = zero} {zero} _ = refl -inject<!-cong {suc _} {k = suc k} {suc l} k≡l = cong suc (inject<!-cong (cong pred k≡l)) - -raise>-cong : ∀ {n i j k l} → toℕ> {i = i} k ≡ toℕ> {i = j} l → raise> {n} k ≡ raise> l -raise>-cong {suc _} {k = zero} {zero} _ = refl -raise>-cong {suc _} {k = suc k} {suc l} k≡l = cong suc (raise>-cong (cong pred k≡l)) -raise>-cong {suc _} {k = suc k} {inj l} k≡l = cong suc (raise>-cong (cong pred k≡l)) -raise>-cong {suc _} {k = inj k} {suc l} k≡l = cong suc (raise>-cong (cong pred k≡l)) -raise>-cong {suc _} {k = inj k} {inj l} k≡l = cong suc (raise>-cong (cong pred k≡l)) - -toℕ>-suc> : ∀ {n} j → toℕ> (suc> {suc n} j) ≡ toℕ> (suc j) -toℕ>-suc> zero = refl -toℕ>-suc> (suc j) = cong suc (toℕ>-suc> j) - -toℕ<-inject<! : ∀ {n i} j → toℕ (inject<! {n} {i} j) ≡ toℕ< j -toℕ<-inject<! {suc n} zero = refl -toℕ<-inject<! {suc n} (suc j) = cong suc (toℕ<-inject<! j) - -toℕ>-cast>-inject<! : ∀ {n i} j k → toℕ> k ≡ toℕ> (cast>-inject<! {n} {i} j k) -toℕ>-cast>-inject<! zero zero = refl -toℕ>-cast>-inject<! zero (suc k) = cong suc (toℕ>-cast>-inject<! zero k) -toℕ>-cast>-inject<! {suc n} zero (inj k) = cong suc (toℕ>-cast>-inject<! zero k) -toℕ>-cast>-inject<! {suc n} (suc j) (inj k) = cong suc (toℕ>-cast>-inject<! j k) +------------------------------------------------------------------------ +-- Properties missing from Data.Fin.Properties +------------------------------------------------------------------------ + +inject₁-mono : ∀ {n i j} → toℕ {n} i ≤ toℕ {n} j → toℕ (inject₁ i) ≤ toℕ (inject₁ j) +inject₁-mono {i = zero} i≤j = z≤n +inject₁-mono {i = suc i} {suc j} (s≤s i≤j) = s≤s (inject₁-mono i≤j) + +------------------------------------------------------------------------ +-- Properties of toℕ< +------------------------------------------------------------------------ + +toℕ<<i : ∀ {n i} j → toℕ< {n} {i} j < toℕ i +toℕ<<i zero = s≤s z≤n +toℕ<<i (suc j) = s≤s (toℕ<<i j) + +------------------------------------------------------------------------ +-- Properties of toℕ> + +toℕ>≥i : ∀ {n i} j → toℕ> {n} {i} j ≥ toℕ i +toℕ>≥i zero = z≤n +toℕ>≥i (suc j) = z≤n +toℕ>≥i (inj j) = s≤s (toℕ>≥i j) + +------------------------------------------------------------------------ +-- Properties of inject!< +------------------------------------------------------------------------ + +toℕ-inject!< : ∀ {n i} j → toℕ (inject!< {n} {i} j) ≡ toℕ< j +toℕ-inject!< {suc _} zero = refl +toℕ-inject!< {suc _} (suc j) = cong suc (toℕ-inject!< j) + +inject!<-mono : + ∀ {m n i j k l} → toℕ< k ≤ toℕ< l → toℕ (inject!< {m} {i} k) ≤ toℕ (inject!< {n} {j} l) +inject!<-mono {k = k} {l} k≤l = begin + toℕ (inject!< k) ≡⟨ toℕ-inject!< k ⟩ + toℕ< k ≤⟨ k≤l ⟩ + toℕ< l ≡˘⟨ toℕ-inject!< l ⟩ + toℕ (inject!< l) ∎ + where open ≤-Reasoning + +inject!<-cong : + ∀ {m n i j k l} → toℕ< k ≡ toℕ< l → toℕ (inject!< {m} {i} k) ≡ toℕ (inject!< {n} {j} l) +inject!<-cong {k = k} {l} k≡l = begin + toℕ (inject!< k) ≡⟨ toℕ-inject!< k ⟩ + toℕ< k ≡⟨ k≡l ⟩ + toℕ< l ≡˘⟨ toℕ-inject!< l ⟩ + toℕ (inject!< l) ∎ + where open ≡-Reasoning + +------------------------------------------------------------------------ +-- Properties of inject*<* +------------------------------------------------------------------------ + +inject-square : ∀ {n i j} k → inject< (inject!<< {n} {i} {j} k) ≡ inject!< (inject<< k) +inject-square {suc n} {suc i} zero = refl +inject-square {suc n} {suc i} (suc k) = cong suc (inject-square k) + +------------------------------------------------------------------------ +-- Properties of strengthen< +------------------------------------------------------------------------ + +toℕ-strengthen< : ∀ {n} i → toℕ< (strengthen< {n} i) ≡ toℕ i +toℕ-strengthen< zero = refl +toℕ-strengthen< (suc i) = cong suc (toℕ-strengthen< i) + +strengthen<-inject!< : ∀ {n i} j → toℕ< (strengthen< (inject!< {n} {i} j)) ≡ toℕ< j +strengthen<-inject!< {suc _} zero = refl +strengthen<-inject!< {suc _} (suc j) = cong suc (strengthen<-inject!< j) + +------------------------------------------------------------------------ +-- Properties of cast< +------------------------------------------------------------------------ + +toℕ-cast< : ∀ {m n i j} i≡j k → toℕ< (cast< {m} {n} {i} {j} i≡j k) ≡ toℕ< k +toℕ-cast< {i = suc _} {suc _} i≡j zero = refl +toℕ-cast< {i = suc _} {suc _} i≡j (suc k) = cong suc (toℕ-cast< (cong pred i≡j) k) + +------------------------------------------------------------------------ +-- Properties of cast> +------------------------------------------------------------------------ + +toℕ-cast> : ∀ {n i j} j≤i k → toℕ> (cast> {n} {i} {j} j≤i k) ≡ toℕ> k +toℕ-cast> {_} {zero} {zero} j≤i zero = refl +toℕ-cast> {_} {zero} {zero} j≤i (suc k) = cong suc (toℕ-cast> j≤i k) +toℕ-cast> {suc (suc n)} {suc i} {zero} j≤i (inj k) = cong suc (toℕ-cast> z≤n k) +toℕ-cast> {suc (suc n)} {suc i} {suc j} j≤i (inj k) = cong suc (toℕ-cast> (pred-mono j≤i) k) + +------------------------------------------------------------------------ +-- Properties of raise!> +------------------------------------------------------------------------ + +toℕ-raise!> : ∀ {n i} j → toℕ (raise!> {n} {i} j) ≡ toℕ> j +toℕ-raise!> zero = refl +toℕ-raise!> (suc j) = cong suc (toℕ-raise!> j) +toℕ-raise!> {suc n} (inj j) = cong suc (toℕ-raise!> j) + +raise!>-cong : ∀ {m n i j k l} → toℕ> k ≡ toℕ> l → toℕ (raise!> {m} {i} k) ≡ toℕ (raise!> {n} {j} l) +raise!>-cong {k = k} {l} k≡l = begin + toℕ (raise!> k) ≡⟨ toℕ-raise!> k ⟩ + toℕ> k ≡⟨ k≡l ⟩ + toℕ> l ≡˘⟨ toℕ-raise!> l ⟩ + toℕ (raise!> l) ∎ + where open ≡-Reasoning + +------------------------------------------------------------------------ +-- Properties of suc> +------------------------------------------------------------------------ + +toℕ-suc> : ∀ {n i} j → toℕ> (suc> {n} {i} j) ≡ suc (toℕ> j) +toℕ-suc> zero = refl +toℕ-suc> (suc j) = cong suc (toℕ-suc> j) +toℕ-suc> (inj j) = cong suc (toℕ-suc> j) + +------------------------------------------------------------------------ +-- Properties of predⁱ< +------------------------------------------------------------------------ + +toℕ-predⁱ< : ∀ {n i} j → suc (toℕ (predⁱ< {n} {i} j)) ≡ toℕ i +toℕ-predⁱ< {i = suc _} _ = refl + +predⁱ<-mono : + ∀ {n i j} k l → toℕ i ≤ toℕ j → toℕ (predⁱ< {n} {i} k) ≤ toℕ (predⁱ< {n} {j} l) +predⁱ<-mono {i = i} {j} k l i≤j = pred-mono (begin + suc (toℕ (predⁱ< k)) ≡⟨ toℕ-predⁱ< k ⟩ + toℕ i ≤⟨ i≤j ⟩ + toℕ j ≡˘⟨ toℕ-predⁱ< l ⟩ + suc (toℕ (predⁱ< l)) ∎) + where open ≤-Reasoning + +predⁱ<-cong : + ∀ {n i j} k l → toℕ i ≡ toℕ j → toℕ (predⁱ< {n} {i} k) ≡ toℕ (predⁱ< {n} {j} l) +predⁱ<-cong {i = i} {j} k l i≡j = suc-injective (begin + suc (toℕ (predⁱ< k)) ≡⟨ toℕ-predⁱ< k ⟩ + toℕ i ≡⟨ i≡j ⟩ + toℕ j ≡˘⟨ toℕ-predⁱ< l ⟩ + suc (toℕ (predⁱ< l)) ∎) + where open ≡-Reasoning + +------------------------------------------------------------------------ +-- Properties of inject₁ⁱ> +------------------------------------------------------------------------ + +toℕ-inject₁ⁱ> : ∀ {n i} j → toℕ (inject₁ⁱ> {n} {i} j) ≡ toℕ i +toℕ-inject₁ⁱ> {suc _} zero = refl +toℕ-inject₁ⁱ> {suc _} (suc k) = refl +toℕ-inject₁ⁱ> {suc _} (inj k) = cong suc (toℕ-inject₁ⁱ> k) + +inject₁ⁱ>-mono : + ∀ {n i j} k l → toℕ i ≤ toℕ j → toℕ (inject₁ⁱ> {n} {i} k) ≤ toℕ (inject₁ⁱ> {n} {j} l) +inject₁ⁱ>-mono {i = i} {j} k l i≤j = begin + toℕ (inject₁ⁱ> k) ≡⟨ toℕ-inject₁ⁱ> k ⟩ + toℕ i ≤⟨ i≤j ⟩ + toℕ j ≡˘⟨ toℕ-inject₁ⁱ> l ⟩ + toℕ (inject₁ⁱ> l) ∎ + where open ≤-Reasoning + +inject₁ⁱ>-cong : + ∀ {n i j} k l → toℕ i ≡ toℕ j → toℕ (inject₁ⁱ> {n} {i} k) ≡ toℕ (inject₁ⁱ> {n} {j} l) +inject₁ⁱ>-cong {i = i} {j} k l i≡j = begin + toℕ (inject₁ⁱ> k) ≡⟨ toℕ-inject₁ⁱ> k ⟩ + toℕ i ≡⟨ i≡j ⟩ + toℕ j ≡˘⟨ toℕ-inject₁ⁱ> l ⟩ + toℕ (inject₁ⁱ> l) ∎ + where open ≡-Reasoning + +------------------------------------------------------------------------ +-- Properties of punchIn> +------------------------------------------------------------------------ + +toℕ-punchIn> : ∀ {n i} j k → toℕ> (punchIn> {suc n} {i} j k) ≡ toℕ (punchIn (raise!> j) (raise!> k)) +toℕ-punchIn> {_} {zero} zero k = sym (cong suc (toℕ-raise!> k)) +toℕ-punchIn> {_} {zero} (suc j) zero = refl +toℕ-punchIn> {_} {zero} (suc j) (suc k) = cong suc (toℕ-punchIn> j k) +toℕ-punchIn> {suc _} {suc i} (inj j) (inj k) = cong suc (toℕ-punchIn> j k) + +------------------------------------------------------------------------ +-- Properties of punchOut> +------------------------------------------------------------------------ + +toℕ-punchOut> : ∀ {n i j k} j≢k → toℕ> (punchOut> {suc n} {i} {j} {k} j≢k) ≡ toℕ (punchOut j≢k) +toℕ-punchOut> {_} {_} {zero} {zero} j≢k = ⊥-elim (j≢k refl) +toℕ-punchOut> {_} {_} {zero} {suc k} j≢k = sym (toℕ-raise!> k) +toℕ-punchOut> {suc _} {_} {suc j} {zero} j≢k = refl +toℕ-punchOut> {suc _} {_} {suc zero} {suc k} j≢k = + cong suc (toℕ-punchOut> (j≢k ∘ cong suc)) +toℕ-punchOut> {suc _} {_} {suc (suc j)} {suc k} j≢k = + cong suc (toℕ-punchOut> {j = suc j} (j≢k ∘ cong suc)) +toℕ-punchOut> {suc _} {suc zero} {inj j} {inj k} j≢k = + cong suc (toℕ-punchOut> (j≢k ∘ cong suc)) +toℕ-punchOut> {suc _} {suc (suc _)} {inj j} {inj k} j≢k = + cong suc (toℕ-punchOut> (j≢k ∘ cong suc)) + +------------------------------------------------------------------------ +-- Properties of reflect! +------------------------------------------------------------------------ + +toℕ-reflect! : ∀ {n i} j k → toℕ> (reflect! {n} {i} j k) ≡ toℕ< j +toℕ-reflect! {suc _} zero zero = refl +toℕ-reflect! {suc (suc _)} {suc _} (suc j) zero = cong suc (toℕ-reflect! j zero) +toℕ-reflect! {suc (suc _)} {suc _} (suc j) (suc k) = cong suc (toℕ-reflect! j k) + +------------------------------------------------------------------------ +-- Properties of reflect +------------------------------------------------------------------------ + +toℕ-reflect : ∀ {n i} j k → toℕ> (reflect {n} {i} j k) ≡ toℕ< j +toℕ-reflect {suc (suc _)} zero zero = refl +toℕ-reflect {_} {suc (suc _)} (suc j) zero = cong suc (toℕ-reflect j zero) +toℕ-reflect {_} {suc (suc _)} (suc j) (suc k) = cong suc (toℕ-reflect j k) + +------------------------------------------------------------------------ +-- Other properties +------------------------------------------------------------------------ + +inj-punchOut : + ∀ {n i j k} → (j≢k : inject!< {suc n} {suc i} j ≢ raise!> (inj {suc n} {i} k)) → + toℕ (punchOut j≢k) ≡ toℕ> k +inj-punchOut {j = zero} {k} j≢k = toℕ-raise!> k +inj-punchOut {suc n} {j = suc j} {inj k} j≢k = cong suc (inj-punchOut (j≢k ∘ cong suc)) + |