diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-04-24 13:55:33 +0100 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-04-24 13:55:33 +0100 |
commit | fb37a9b65813666a3963c240a1bc8f6978a4866f (patch) | |
tree | a0f68ee3e5d5874a2ef5f4255c8525fc4ed78471 /src/Cfe/Fin/Properties.agda | |
parent | a5e00b31b873f7deaefa7cb0f60595452f40a57c (diff) |
Modify Fin definitions.
Diffstat (limited to 'src/Cfe/Fin/Properties.agda')
-rw-r--r-- | src/Cfe/Fin/Properties.agda | 252 |
1 files changed, 226 insertions, 26 deletions
diff --git a/src/Cfe/Fin/Properties.agda b/src/Cfe/Fin/Properties.agda index 56a2c77..c07aa56 100644 --- a/src/Cfe/Fin/Properties.agda +++ b/src/Cfe/Fin/Properties.agda @@ -3,31 +3,231 @@ module Cfe.Fin.Properties where open import Cfe.Fin.Base -open import Data.Fin using (zero; suc; toℕ) -open import Data.Nat using (suc; pred) +open import Data.Empty using (⊥-elim) +open import Data.Fin using (zero; suc; toℕ; punchIn; punchOut; inject₁) +open import Data.Nat using (suc; pred; _≤_; _<_; _≥_; z≤n; s≤s) +open import Data.Nat.Properties using (suc-injective; pred-mono; module ≤-Reasoning) +open import Function using (_∘_) open import Relation.Binary.PropositionalEquality -inject<!-cong : ∀ {n i j k l} → toℕ< {i = i} k ≡ toℕ< {i = j} l → inject<! {n} k ≡ inject<! l -inject<!-cong {suc _} {k = zero} {zero} _ = refl -inject<!-cong {suc _} {k = suc k} {suc l} k≡l = cong suc (inject<!-cong (cong pred k≡l)) - -raise>-cong : ∀ {n i j k l} → toℕ> {i = i} k ≡ toℕ> {i = j} l → raise> {n} k ≡ raise> l -raise>-cong {suc _} {k = zero} {zero} _ = refl -raise>-cong {suc _} {k = suc k} {suc l} k≡l = cong suc (raise>-cong (cong pred k≡l)) -raise>-cong {suc _} {k = suc k} {inj l} k≡l = cong suc (raise>-cong (cong pred k≡l)) -raise>-cong {suc _} {k = inj k} {suc l} k≡l = cong suc (raise>-cong (cong pred k≡l)) -raise>-cong {suc _} {k = inj k} {inj l} k≡l = cong suc (raise>-cong (cong pred k≡l)) - -toℕ>-suc> : ∀ {n} j → toℕ> (suc> {suc n} j) ≡ toℕ> (suc j) -toℕ>-suc> zero = refl -toℕ>-suc> (suc j) = cong suc (toℕ>-suc> j) - -toℕ<-inject<! : ∀ {n i} j → toℕ (inject<! {n} {i} j) ≡ toℕ< j -toℕ<-inject<! {suc n} zero = refl -toℕ<-inject<! {suc n} (suc j) = cong suc (toℕ<-inject<! j) - -toℕ>-cast>-inject<! : ∀ {n i} j k → toℕ> k ≡ toℕ> (cast>-inject<! {n} {i} j k) -toℕ>-cast>-inject<! zero zero = refl -toℕ>-cast>-inject<! zero (suc k) = cong suc (toℕ>-cast>-inject<! zero k) -toℕ>-cast>-inject<! {suc n} zero (inj k) = cong suc (toℕ>-cast>-inject<! zero k) -toℕ>-cast>-inject<! {suc n} (suc j) (inj k) = cong suc (toℕ>-cast>-inject<! j k) +------------------------------------------------------------------------ +-- Properties missing from Data.Fin.Properties +------------------------------------------------------------------------ + +inject₁-mono : ∀ {n i j} → toℕ {n} i ≤ toℕ {n} j → toℕ (inject₁ i) ≤ toℕ (inject₁ j) +inject₁-mono {i = zero} i≤j = z≤n +inject₁-mono {i = suc i} {suc j} (s≤s i≤j) = s≤s (inject₁-mono i≤j) + +------------------------------------------------------------------------ +-- Properties of toℕ< +------------------------------------------------------------------------ + +toℕ<<i : ∀ {n i} j → toℕ< {n} {i} j < toℕ i +toℕ<<i zero = s≤s z≤n +toℕ<<i (suc j) = s≤s (toℕ<<i j) + +------------------------------------------------------------------------ +-- Properties of toℕ> + +toℕ>≥i : ∀ {n i} j → toℕ> {n} {i} j ≥ toℕ i +toℕ>≥i zero = z≤n +toℕ>≥i (suc j) = z≤n +toℕ>≥i (inj j) = s≤s (toℕ>≥i j) + +------------------------------------------------------------------------ +-- Properties of inject!< +------------------------------------------------------------------------ + +toℕ-inject!< : ∀ {n i} j → toℕ (inject!< {n} {i} j) ≡ toℕ< j +toℕ-inject!< {suc _} zero = refl +toℕ-inject!< {suc _} (suc j) = cong suc (toℕ-inject!< j) + +inject!<-mono : + ∀ {m n i j k l} → toℕ< k ≤ toℕ< l → toℕ (inject!< {m} {i} k) ≤ toℕ (inject!< {n} {j} l) +inject!<-mono {k = k} {l} k≤l = begin + toℕ (inject!< k) ≡⟨ toℕ-inject!< k ⟩ + toℕ< k ≤⟨ k≤l ⟩ + toℕ< l ≡˘⟨ toℕ-inject!< l ⟩ + toℕ (inject!< l) ∎ + where open ≤-Reasoning + +inject!<-cong : + ∀ {m n i j k l} → toℕ< k ≡ toℕ< l → toℕ (inject!< {m} {i} k) ≡ toℕ (inject!< {n} {j} l) +inject!<-cong {k = k} {l} k≡l = begin + toℕ (inject!< k) ≡⟨ toℕ-inject!< k ⟩ + toℕ< k ≡⟨ k≡l ⟩ + toℕ< l ≡˘⟨ toℕ-inject!< l ⟩ + toℕ (inject!< l) ∎ + where open ≡-Reasoning + +------------------------------------------------------------------------ +-- Properties of inject*<* +------------------------------------------------------------------------ + +inject-square : ∀ {n i j} k → inject< (inject!<< {n} {i} {j} k) ≡ inject!< (inject<< k) +inject-square {suc n} {suc i} zero = refl +inject-square {suc n} {suc i} (suc k) = cong suc (inject-square k) + +------------------------------------------------------------------------ +-- Properties of strengthen< +------------------------------------------------------------------------ + +toℕ-strengthen< : ∀ {n} i → toℕ< (strengthen< {n} i) ≡ toℕ i +toℕ-strengthen< zero = refl +toℕ-strengthen< (suc i) = cong suc (toℕ-strengthen< i) + +strengthen<-inject!< : ∀ {n i} j → toℕ< (strengthen< (inject!< {n} {i} j)) ≡ toℕ< j +strengthen<-inject!< {suc _} zero = refl +strengthen<-inject!< {suc _} (suc j) = cong suc (strengthen<-inject!< j) + +------------------------------------------------------------------------ +-- Properties of cast< +------------------------------------------------------------------------ + +toℕ-cast< : ∀ {m n i j} i≡j k → toℕ< (cast< {m} {n} {i} {j} i≡j k) ≡ toℕ< k +toℕ-cast< {i = suc _} {suc _} i≡j zero = refl +toℕ-cast< {i = suc _} {suc _} i≡j (suc k) = cong suc (toℕ-cast< (cong pred i≡j) k) + +------------------------------------------------------------------------ +-- Properties of cast> +------------------------------------------------------------------------ + +toℕ-cast> : ∀ {n i j} j≤i k → toℕ> (cast> {n} {i} {j} j≤i k) ≡ toℕ> k +toℕ-cast> {_} {zero} {zero} j≤i zero = refl +toℕ-cast> {_} {zero} {zero} j≤i (suc k) = cong suc (toℕ-cast> j≤i k) +toℕ-cast> {suc (suc n)} {suc i} {zero} j≤i (inj k) = cong suc (toℕ-cast> z≤n k) +toℕ-cast> {suc (suc n)} {suc i} {suc j} j≤i (inj k) = cong suc (toℕ-cast> (pred-mono j≤i) k) + +------------------------------------------------------------------------ +-- Properties of raise!> +------------------------------------------------------------------------ + +toℕ-raise!> : ∀ {n i} j → toℕ (raise!> {n} {i} j) ≡ toℕ> j +toℕ-raise!> zero = refl +toℕ-raise!> (suc j) = cong suc (toℕ-raise!> j) +toℕ-raise!> {suc n} (inj j) = cong suc (toℕ-raise!> j) + +raise!>-cong : ∀ {m n i j k l} → toℕ> k ≡ toℕ> l → toℕ (raise!> {m} {i} k) ≡ toℕ (raise!> {n} {j} l) +raise!>-cong {k = k} {l} k≡l = begin + toℕ (raise!> k) ≡⟨ toℕ-raise!> k ⟩ + toℕ> k ≡⟨ k≡l ⟩ + toℕ> l ≡˘⟨ toℕ-raise!> l ⟩ + toℕ (raise!> l) ∎ + where open ≡-Reasoning + +------------------------------------------------------------------------ +-- Properties of suc> +------------------------------------------------------------------------ + +toℕ-suc> : ∀ {n i} j → toℕ> (suc> {n} {i} j) ≡ suc (toℕ> j) +toℕ-suc> zero = refl +toℕ-suc> (suc j) = cong suc (toℕ-suc> j) +toℕ-suc> (inj j) = cong suc (toℕ-suc> j) + +------------------------------------------------------------------------ +-- Properties of predⁱ< +------------------------------------------------------------------------ + +toℕ-predⁱ< : ∀ {n i} j → suc (toℕ (predⁱ< {n} {i} j)) ≡ toℕ i +toℕ-predⁱ< {i = suc _} _ = refl + +predⁱ<-mono : + ∀ {n i j} k l → toℕ i ≤ toℕ j → toℕ (predⁱ< {n} {i} k) ≤ toℕ (predⁱ< {n} {j} l) +predⁱ<-mono {i = i} {j} k l i≤j = pred-mono (begin + suc (toℕ (predⁱ< k)) ≡⟨ toℕ-predⁱ< k ⟩ + toℕ i ≤⟨ i≤j ⟩ + toℕ j ≡˘⟨ toℕ-predⁱ< l ⟩ + suc (toℕ (predⁱ< l)) ∎) + where open ≤-Reasoning + +predⁱ<-cong : + ∀ {n i j} k l → toℕ i ≡ toℕ j → toℕ (predⁱ< {n} {i} k) ≡ toℕ (predⁱ< {n} {j} l) +predⁱ<-cong {i = i} {j} k l i≡j = suc-injective (begin + suc (toℕ (predⁱ< k)) ≡⟨ toℕ-predⁱ< k ⟩ + toℕ i ≡⟨ i≡j ⟩ + toℕ j ≡˘⟨ toℕ-predⁱ< l ⟩ + suc (toℕ (predⁱ< l)) ∎) + where open ≡-Reasoning + +------------------------------------------------------------------------ +-- Properties of inject₁ⁱ> +------------------------------------------------------------------------ + +toℕ-inject₁ⁱ> : ∀ {n i} j → toℕ (inject₁ⁱ> {n} {i} j) ≡ toℕ i +toℕ-inject₁ⁱ> {suc _} zero = refl +toℕ-inject₁ⁱ> {suc _} (suc k) = refl +toℕ-inject₁ⁱ> {suc _} (inj k) = cong suc (toℕ-inject₁ⁱ> k) + +inject₁ⁱ>-mono : + ∀ {n i j} k l → toℕ i ≤ toℕ j → toℕ (inject₁ⁱ> {n} {i} k) ≤ toℕ (inject₁ⁱ> {n} {j} l) +inject₁ⁱ>-mono {i = i} {j} k l i≤j = begin + toℕ (inject₁ⁱ> k) ≡⟨ toℕ-inject₁ⁱ> k ⟩ + toℕ i ≤⟨ i≤j ⟩ + toℕ j ≡˘⟨ toℕ-inject₁ⁱ> l ⟩ + toℕ (inject₁ⁱ> l) ∎ + where open ≤-Reasoning + +inject₁ⁱ>-cong : + ∀ {n i j} k l → toℕ i ≡ toℕ j → toℕ (inject₁ⁱ> {n} {i} k) ≡ toℕ (inject₁ⁱ> {n} {j} l) +inject₁ⁱ>-cong {i = i} {j} k l i≡j = begin + toℕ (inject₁ⁱ> k) ≡⟨ toℕ-inject₁ⁱ> k ⟩ + toℕ i ≡⟨ i≡j ⟩ + toℕ j ≡˘⟨ toℕ-inject₁ⁱ> l ⟩ + toℕ (inject₁ⁱ> l) ∎ + where open ≡-Reasoning + +------------------------------------------------------------------------ +-- Properties of punchIn> +------------------------------------------------------------------------ + +toℕ-punchIn> : ∀ {n i} j k → toℕ> (punchIn> {suc n} {i} j k) ≡ toℕ (punchIn (raise!> j) (raise!> k)) +toℕ-punchIn> {_} {zero} zero k = sym (cong suc (toℕ-raise!> k)) +toℕ-punchIn> {_} {zero} (suc j) zero = refl +toℕ-punchIn> {_} {zero} (suc j) (suc k) = cong suc (toℕ-punchIn> j k) +toℕ-punchIn> {suc _} {suc i} (inj j) (inj k) = cong suc (toℕ-punchIn> j k) + +------------------------------------------------------------------------ +-- Properties of punchOut> +------------------------------------------------------------------------ + +toℕ-punchOut> : ∀ {n i j k} j≢k → toℕ> (punchOut> {suc n} {i} {j} {k} j≢k) ≡ toℕ (punchOut j≢k) +toℕ-punchOut> {_} {_} {zero} {zero} j≢k = ⊥-elim (j≢k refl) +toℕ-punchOut> {_} {_} {zero} {suc k} j≢k = sym (toℕ-raise!> k) +toℕ-punchOut> {suc _} {_} {suc j} {zero} j≢k = refl +toℕ-punchOut> {suc _} {_} {suc zero} {suc k} j≢k = + cong suc (toℕ-punchOut> (j≢k ∘ cong suc)) +toℕ-punchOut> {suc _} {_} {suc (suc j)} {suc k} j≢k = + cong suc (toℕ-punchOut> {j = suc j} (j≢k ∘ cong suc)) +toℕ-punchOut> {suc _} {suc zero} {inj j} {inj k} j≢k = + cong suc (toℕ-punchOut> (j≢k ∘ cong suc)) +toℕ-punchOut> {suc _} {suc (suc _)} {inj j} {inj k} j≢k = + cong suc (toℕ-punchOut> (j≢k ∘ cong suc)) + +------------------------------------------------------------------------ +-- Properties of reflect! +------------------------------------------------------------------------ + +toℕ-reflect! : ∀ {n i} j k → toℕ> (reflect! {n} {i} j k) ≡ toℕ< j +toℕ-reflect! {suc _} zero zero = refl +toℕ-reflect! {suc (suc _)} {suc _} (suc j) zero = cong suc (toℕ-reflect! j zero) +toℕ-reflect! {suc (suc _)} {suc _} (suc j) (suc k) = cong suc (toℕ-reflect! j k) + +------------------------------------------------------------------------ +-- Properties of reflect +------------------------------------------------------------------------ + +toℕ-reflect : ∀ {n i} j k → toℕ> (reflect {n} {i} j k) ≡ toℕ< j +toℕ-reflect {suc (suc _)} zero zero = refl +toℕ-reflect {_} {suc (suc _)} (suc j) zero = cong suc (toℕ-reflect j zero) +toℕ-reflect {_} {suc (suc _)} (suc j) (suc k) = cong suc (toℕ-reflect j k) + +------------------------------------------------------------------------ +-- Other properties +------------------------------------------------------------------------ + +inj-punchOut : + ∀ {n i j k} → (j≢k : inject!< {suc n} {suc i} j ≢ raise!> (inj {suc n} {i} k)) → + toℕ (punchOut j≢k) ≡ toℕ> k +inj-punchOut {j = zero} {k} j≢k = toℕ-raise!> k +inj-punchOut {suc n} {j = suc j} {inj k} j≢k = cong suc (inj-punchOut (j≢k ∘ cong suc)) + |