summaryrefslogtreecommitdiff
path: root/src/Cfe/Type
diff options
context:
space:
mode:
authorChloe Brown <chloe.brown.00@outlook.com>2021-04-29 20:58:04 +0100
committerChloe Brown <chloe.brown.00@outlook.com>2021-04-29 20:58:04 +0100
commit8abb1b5601fabf5e7560d08faa6e633e60663e0a (patch)
tree99e76379b280cc16bc869830ba3a3b89e5c99c12 /src/Cfe/Type
parent0708355c7988345c98961cad087dc56eeb16ea7f (diff)
Finally prove that e [ μ e / zero ] ≈ μ e.
Complete proof of generator.
Diffstat (limited to 'src/Cfe/Type')
-rw-r--r--src/Cfe/Type/Properties.agda14
1 files changed, 7 insertions, 7 deletions
diff --git a/src/Cfe/Type/Properties.agda b/src/Cfe/Type/Properties.agda
index 21051c0..4b38c1e 100644
--- a/src/Cfe/Type/Properties.agda
+++ b/src/Cfe/Type/Properties.agda
@@ -16,7 +16,6 @@ open Setoid over using ()
)
open import Algebra
-open import Cfe.Function.Power
open import Cfe.Language over
hiding
( _≉_; ≈-refl; ≈-trans; ≈-isPartialEquivalence; ≈-isEquivalence; partialSetoid; setoid
@@ -356,19 +355,20 @@ setoid {fℓ} {lℓ} = record { isEquivalence = ≈-isEquivalence {fℓ} {lℓ}
; l⇒l = λ (x , w , (m , xw∈Fᵐ) , w′ , n , xwcw′∈Fⁿ) →
Fⁿ⊨τ.l⇒l
(m + n)
- (-, -, ∈-resp-⊆ (step (m≤m+n m n)) xw∈Fᵐ , -, ∈-resp-⊆ (step (m≤n+m n m)) xwcw′∈Fⁿ)
+ ( x
+ , w
+ , ∈-resp-⊆ (Iter-monoʳ mono (⊆-min (F ∅)) (m≤m+n m n)) xw∈Fᵐ
+ , w′
+ , ∈-resp-⊆ (Iter-monoʳ mono (⊆-min (F ∅)) (m≤n+m n m)) xwcw′∈Fⁿ
+ )
}
where
- Fⁿ⊨τ : ∀ n → (F ^ n) ∅ ⊨ τ
+ Fⁿ⊨τ : ∀ n → Iter F ∅ n ⊨ τ
Fⁿ⊨τ zero = ⊨-min τ
Fⁿ⊨τ (suc n) = ⊨-step (Fⁿ⊨τ n)
module Fⁿ⊨τ n = _⊨_ (Fⁿ⊨τ n)
- step : ∀ {m n} → m ≤ⁿ n → (F ^ m) ∅ ⊆ (F ^ n) ∅
- step {n = n} z≤n = ⊆-min ((F ^ n) ∅)
- step (s≤s m≤n) = mono (step m≤n)
-
------------------------------------------------------------------------
-- Properties of _⊛_
------------------------------------------------------------------------