diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-04-29 20:58:04 +0100 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-04-29 20:58:04 +0100 |
commit | 8abb1b5601fabf5e7560d08faa6e633e60663e0a (patch) | |
tree | 99e76379b280cc16bc869830ba3a3b89e5c99c12 /src/Cfe/Type | |
parent | 0708355c7988345c98961cad087dc56eeb16ea7f (diff) |
Finally prove that e [ μ e / zero ] ≈ μ e.
Complete proof of generator.
Diffstat (limited to 'src/Cfe/Type')
-rw-r--r-- | src/Cfe/Type/Properties.agda | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/src/Cfe/Type/Properties.agda b/src/Cfe/Type/Properties.agda index 21051c0..4b38c1e 100644 --- a/src/Cfe/Type/Properties.agda +++ b/src/Cfe/Type/Properties.agda @@ -16,7 +16,6 @@ open Setoid over using () ) open import Algebra -open import Cfe.Function.Power open import Cfe.Language over hiding ( _≉_; ≈-refl; ≈-trans; ≈-isPartialEquivalence; ≈-isEquivalence; partialSetoid; setoid @@ -356,19 +355,20 @@ setoid {fℓ} {lℓ} = record { isEquivalence = ≈-isEquivalence {fℓ} {lℓ} ; l⇒l = λ (x , w , (m , xw∈Fᵐ) , w′ , n , xwcw′∈Fⁿ) → Fⁿ⊨τ.l⇒l (m + n) - (-, -, ∈-resp-⊆ (step (m≤m+n m n)) xw∈Fᵐ , -, ∈-resp-⊆ (step (m≤n+m n m)) xwcw′∈Fⁿ) + ( x + , w + , ∈-resp-⊆ (Iter-monoʳ mono (⊆-min (F ∅)) (m≤m+n m n)) xw∈Fᵐ + , w′ + , ∈-resp-⊆ (Iter-monoʳ mono (⊆-min (F ∅)) (m≤n+m n m)) xwcw′∈Fⁿ + ) } where - Fⁿ⊨τ : ∀ n → (F ^ n) ∅ ⊨ τ + Fⁿ⊨τ : ∀ n → Iter F ∅ n ⊨ τ Fⁿ⊨τ zero = ⊨-min τ Fⁿ⊨τ (suc n) = ⊨-step (Fⁿ⊨τ n) module Fⁿ⊨τ n = _⊨_ (Fⁿ⊨τ n) - step : ∀ {m n} → m ≤ⁿ n → (F ^ m) ∅ ⊆ (F ^ n) ∅ - step {n = n} z≤n = ⊆-min ((F ^ n) ∅) - step (s≤s m≤n) = mono (step m≤n) - ------------------------------------------------------------------------ -- Properties of _⊛_ ------------------------------------------------------------------------ |