1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
module Encoded.Sum
import public Data.List
import public Data.List.Elem
import public Data.List.Quantifiers
import Encoded.Bool
import Encoded.Pair
import Encoded.Union
import Term.Semantics
import Term.Syntax
-- Binary Sums -----------------------------------------------------------------
export
(+) : Ty -> Ty -> Ty
ty1 + ty2 = B * (ty1 <+> ty2)
export
{ty1, ty2 : Ty} -> Show (TypeOf ty1) => Show (TypeOf ty2) => Show (TypeOf (ty1 + ty2)) where
show p =
if toBool (sem fst [<] p)
then fastConcat ["Left (", show (sem (prL . snd) [<] p), ")"]
else fastConcat ["Right (", show (sem (prR . snd) [<] p), ")"]
export
left : {ty1, ty2 : Ty} -> Term (ty1 ~> (ty1 + ty2)) ctx
left = Abs' (\t => App pair [<True, App inL [<t]])
export
right : {ty1, ty2 : Ty} -> Term (ty2 ~> (ty1 + ty2)) ctx
right = Abs' (\t => App pair [<False, App inR [<t]])
export
case' : {ty1, ty2, ty : Ty} -> Term ((ty1 + ty2) ~> (ty1 ~> ty) ~> (ty2 ~> ty) ~> ty) ctx
case' = Abs' (\t =>
App if'
[<App fst [<t]
, Abs $ Const $ App (Var Here . prL . snd) [<shift t]
, Const $ Abs $ App (Var Here . prR . snd) [<shift t]
])
export
either : {ty1, ty2, ty : Ty} -> Term ((ty1 ~> ty) ~> (ty2 ~> ty) ~> (ty1 + ty2) ~> ty) ctx
either = Abs $ Abs $ Abs $
let f = Var $ There $ There Here in
let g = Var $ There Here in
let x = Var Here in
App case' [<x, f, g]
-- N-ary Sums ------------------------------------------------------------------
public export
mapNonEmpty : NonEmpty xs -> NonEmpty (map f xs)
mapNonEmpty IsNonEmpty = IsNonEmpty
export
Sum : (tys : List Ty) -> {auto 0 ok : NonEmpty tys} -> Ty
Sum = foldr1 (+)
export
any :
{tys : List Ty} ->
{ty : Ty} ->
{auto 0 ok : NonEmpty tys} ->
All (\ty' => Term (ty' ~> ty) ctx) tys ->
Term (Sum tys ~> ty) ctx
any [f] = f
any (f :: fs@(_ :: _)) = App either [<f, any fs]
export
tag :
{tys : List Ty} ->
{ty : Ty} ->
{auto 0 ok : NonEmpty tys} ->
Elem ty tys ->
Term (ty ~> Sum tys) ctx
tag {tys = [_]} Here = Id
tag {tys = _ :: _ :: _} Here = left
tag {tys = _ :: _ :: _} (There i) = right . tag i
|