diff options
author | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-03-19 13:28:42 +0000 |
---|---|---|
committer | Greg Brown <greg.brown@cl.cam.ac.uk> | 2022-03-19 13:53:40 +0000 |
commit | 535e4297a08c626d0e2e1923914727f914b8c9bd (patch) | |
tree | 10e9b728083c4c69b80c3a07c4e68bfa025519c8 /src/Helium/Data/Pseudocode/Core.agda | |
parent | 78aad93db3d7029e0a9a8517a2db92533fd1f401 (diff) |
Modify pseudocode definition.
This change makes the following changes to the definition of pseudocode:
- Add a separate type `bit` for single-bit values.
- Change `var` and `state` to take `Fin`s instead of bounded naturals.
- Make `[_]` and `unbox` work for any sliced type.
- Generalise `_:_` and `slice` into `splice` and `cut` respectively,
making the two new operations inverses.
- Replace `tup` with `nil` and `cons` for building tuples.
- Add destructors `head` and `tail` for tuple types.
- Make function and procedure calls take a vector of arguments instead
of a tuple.
- Introduce an `if_then_` expression for if statements with a trivial
else branch.
Diffstat (limited to 'src/Helium/Data/Pseudocode/Core.agda')
-rw-r--r-- | src/Helium/Data/Pseudocode/Core.agda | 261 |
1 files changed, 151 insertions, 110 deletions
diff --git a/src/Helium/Data/Pseudocode/Core.agda b/src/Helium/Data/Pseudocode/Core.agda index 8a0c4e3..079e2ce 100644 --- a/src/Helium/Data/Pseudocode/Core.agda +++ b/src/Helium/Data/Pseudocode/Core.agda @@ -9,7 +9,8 @@ module Helium.Data.Pseudocode.Core where open import Data.Bool using (Bool; true; false) -open import Data.Fin using (Fin; #_) +open import Data.Fin as Fin using (Fin) +open import Data.Fin.Patterns open import Data.Nat as ℕ using (ℕ; zero; suc) open import Data.Nat.Properties using (+-comm) open import Data.Product using (∃; _,_; proj₂; uncurry) @@ -19,7 +20,7 @@ open import Data.Vec.Relation.Unary.All using (All; []; _∷_; reduce) open import Data.Vec.Relation.Unary.Any using (Any; here; there) open import Function as F using (_∘_; _∘′_; _∋_) open import Relation.Binary.PropositionalEquality using (_≡_; refl) -open import Relation.Nullary using (yes; no) +open import Relation.Nullary using (Dec; yes; no) open import Relation.Nullary.Decidable.Core using (True; False; toWitness; fromWitness; map′) open import Relation.Nullary.Product using (_×-dec_) open import Relation.Nullary.Sum using (_⊎-dec_) @@ -31,18 +32,17 @@ data Type : Set where int : Type fin : (n : ℕ) → Type real : Type + bit : Type bits : (n : ℕ) → Type tuple : ∀ n → Vec Type n → Type array : Type → (n : ℕ) → Type -bit : Type -bit = bits 1 - data HasEquality : Type → Set where bool : HasEquality bool int : HasEquality int fin : ∀ {n} → HasEquality (fin n) real : HasEquality real + bit : HasEquality bit bits : ∀ {n} → HasEquality (bits n) hasEquality? : Decidable HasEquality @@ -50,6 +50,7 @@ hasEquality? bool = yes bool hasEquality? int = yes int hasEquality? (fin n) = yes fin hasEquality? real = yes real +hasEquality? bit = yes bit hasEquality? (bits n) = yes bits hasEquality? (tuple n x) = no (λ ()) hasEquality? (array t n) = no (λ ()) @@ -61,16 +62,17 @@ data IsNumeric : Type → Set where isNumeric? : Decidable IsNumeric isNumeric? bool = no (λ ()) isNumeric? int = yes int -isNumeric? real = yes real isNumeric? (fin n) = no (λ ()) +isNumeric? real = yes real +isNumeric? bit = no (λ ()) isNumeric? (bits n) = no (λ ()) isNumeric? (tuple n x) = no (λ ()) isNumeric? (array t n) = no (λ ()) -combineNumeric : ∀ t₁ t₂ → {isNumeric₁ : True (isNumeric? t₁)} → {isNumeric₂ : True (isNumeric? t₂)} → Type -combineNumeric int int = int -combineNumeric int real = real -combineNumeric real _ = real +combineNumeric : ∀ t₁ t₂ → (isNumeric₁ : True (isNumeric? t₁)) → (isNumeric₂ : True (isNumeric? t₂)) → Type +combineNumeric int int _ _ = int +combineNumeric int real _ _ = real +combineNumeric real _ _ _ = real data Sliced : Set where bits : Sliced @@ -87,12 +89,13 @@ elemType (array t) = t --- Literals data Literal : Type → Set where - _′b : Bool → Literal bool - _′i : ℕ → Literal int - _′f : ∀ {n} → Fin n → Literal (fin n) - _′r : ℕ → Literal real - _′x : ∀ {n} → Vec Bool n → Literal (bits n) - _′a : ∀ {n t} → Literal t → Literal (array t n) + _′b : Bool → Literal bool + _′i : ℕ → Literal int + _′f : ∀ {n} → Fin n → Literal (fin n) + _′r : ℕ → Literal real + _′x : Bool → Literal bit + _′xs : ∀ {n} → Vec Bool n → Literal (bits n) + _′a : ∀ {n t} → Literal t → Literal (array t n) --- Expressions, references, statements, functions and procedures @@ -100,10 +103,8 @@ module Code {o} (Σ : Vec Type o) where data Expression {n} (Γ : Vec Type n) : Type → Set data CanAssign {n Γ} : ∀ {t} → Expression {n} Γ t → Set canAssign? : ∀ {n Γ t} → Decidable (CanAssign {n} {Γ} {t}) - canAssignAll? : ∀ {n Γ m ts} → Decidable {A = All (Expression {n} Γ) {m} ts} (All (CanAssign ∘ proj₂) ∘ (reduce (λ {x} e → x , e))) - data AssignsState {n Γ} : ∀ {t e} → CanAssign {n} {Γ} {t} e → Set - assignsState? : ∀ {n Γ t e} → Decidable (AssignsState {n} {Γ} {t} {e}) - assignsStateAny? : ∀ {n Γ m ts es} → Decidable {A = All (CanAssign ∘ proj₂) (reduce {P = Expression {n} Γ} (λ {x} e → x , e) {m} {ts} es)} (Any (AssignsState ∘ proj₂) ∘ reduce (λ {x} a → x , a)) + data ReferencesState {n Γ} : ∀ {t} → Expression {n} Γ t → Set + referencesState? : ∀ {n Γ t} → Decidable (ReferencesState {n} {Γ} {t}) data Statement {n} (Γ : Vec Type n) : Set data ChangesState {n Γ} : Statement {n} Γ → Set changesState? : ∀ {n Γ} → Decidable (ChangesState {n} {Γ}) @@ -114,55 +115,61 @@ module Code {o} (Σ : Vec Type o) where infixr 7 _^_ infixl 6 _*_ _and_ _>>_ -- infixl 6 _/_ - infixl 5 _+_ _or_ _&&_ _||_ _∶_ + infixl 5 _+_ _or_ _&&_ _||_ infix 4 _≟_ _<?_ data Expression {n} Γ where - lit : ∀ {t} → Literal t → Expression Γ t - state : ∀ i {i<o : True (i ℕ.<? o)} → Expression Γ (lookup Σ (#_ i {m<n = i<o})) - var : ∀ i {i<n : True (i ℕ.<? n)} → Expression Γ (lookup Γ (#_ i {m<n = i<n})) - abort : ∀ {t} → Expression Γ (fin 0) → Expression Γ t - _≟_ : ∀ {t} {hasEquality : True (hasEquality? t)} → Expression Γ t → Expression Γ t → Expression Γ bool - _<?_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → Expression Γ t → Expression Γ bool - inv : Expression Γ bool → Expression Γ bool - _&&_ : Expression Γ bool → Expression Γ bool → Expression Γ bool - _||_ : Expression Γ bool → Expression Γ bool → Expression Γ bool - not : ∀ {m} → Expression Γ (bits m) → Expression Γ (bits m) - _and_ : ∀ {m} → Expression Γ (bits m) → Expression Γ (bits m) → Expression Γ (bits m) - _or_ : ∀ {m} → Expression Γ (bits m) → Expression Γ (bits m) → Expression Γ (bits m) - [_] : ∀ {t} → Expression Γ t → Expression Γ (array t 1) - unbox : ∀ {t} → Expression Γ (array t 1) → Expression Γ t - _∶_ : ∀ {m n t} → Expression Γ (asType t m) → Expression Γ (asType t n) → Expression Γ (asType t (n ℕ.+ m)) - slice : ∀ {i j t} → Expression Γ (asType t (i ℕ.+ j)) → Expression Γ (fin (suc i)) → Expression Γ (asType t j) - cast : ∀ {i j t} → .(eq : i ≡ j) → Expression Γ (asType t i) → Expression Γ (asType t j) - -_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → Expression Γ t - _+_ : ∀ {t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ {isNumeric₁} {isNumeric₂}) - _*_ : ∀ {t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ {isNumeric₁} {isNumeric₂}) + lit : ∀ {t} → Literal t → Expression Γ t + state : ∀ i → Expression Γ (lookup Σ i) + var : ∀ i → Expression Γ (lookup Γ i) + abort : ∀ {t} → Expression Γ (fin 0) → Expression Γ t + _≟_ : ∀ {t} {hasEquality : True (hasEquality? t)} → Expression Γ t → Expression Γ t → Expression Γ bool + _<?_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → Expression Γ t → Expression Γ bool + inv : Expression Γ bool → Expression Γ bool + _&&_ : Expression Γ bool → Expression Γ bool → Expression Γ bool + _||_ : Expression Γ bool → Expression Γ bool → Expression Γ bool + not : ∀ {m} → Expression Γ (bits m) → Expression Γ (bits m) + _and_ : ∀ {m} → Expression Γ (bits m) → Expression Γ (bits m) → Expression Γ (bits m) + _or_ : ∀ {m} → Expression Γ (bits m) → Expression Γ (bits m) → Expression Γ (bits m) + [_] : ∀ {t} → Expression Γ (elemType t) → Expression Γ (asType t 1) + unbox : ∀ {t} → Expression Γ (asType t 1) → Expression Γ (elemType t) + splice : ∀ {m n t} → Expression Γ (asType t m) → Expression Γ (asType t n) → Expression Γ (fin (suc n)) → Expression Γ (asType t (n ℕ.+ m)) + cut : ∀ {m n t} → Expression Γ (asType t (n ℕ.+ m)) → Expression Γ (fin (suc n)) → Expression Γ (tuple 2 (asType t m ∷ asType t n ∷ [])) + cast : ∀ {i j t} → .(eq : i ≡ j) → Expression Γ (asType t i) → Expression Γ (asType t j) + -_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → Expression Γ t + _+_ : ∀ {t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ isNumeric₁ isNumeric₂) + _*_ : ∀ {t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ isNumeric₁ isNumeric₂) -- _/_ : Expression Γ real → Expression Γ real → Expression Γ real - _^_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → ℕ → Expression Γ t - _>>_ : Expression Γ int → ℕ → Expression Γ int - rnd : Expression Γ real → Expression Γ int - fin : ∀ {k ms n} → (All (Fin) ms → Fin n) → Expression Γ (tuple k (map fin ms)) → Expression Γ (fin n) - asInt : ∀ {m} → Expression Γ (fin m) → Expression Γ int - tup : ∀ {m ts} → All (Expression Γ) ts → Expression Γ (tuple m ts) - call : ∀ {t m Δ} → Function Δ t → Expression Γ (tuple m Δ) → Expression Γ t + _^_ : ∀ {t} {isNumeric : True (isNumeric? t)} → Expression Γ t → ℕ → Expression Γ t + _>>_ : Expression Γ int → ℕ → Expression Γ int + rnd : Expression Γ real → Expression Γ int + fin : ∀ {k ms n} → (All (Fin) ms → Fin n) → Expression Γ (tuple k (map fin ms)) → Expression Γ (fin n) + asInt : ∀ {m} → Expression Γ (fin m) → Expression Γ int + nil : Expression Γ (tuple 0 []) + cons : ∀ {m t ts} → Expression Γ t → Expression Γ (tuple m ts) → Expression Γ (tuple (suc m) (t ∷ ts)) + head : ∀ {m t ts} → Expression Γ (tuple (suc m) (t ∷ ts)) → Expression Γ t + tail : ∀ {m t ts} → Expression Γ (tuple (suc m) (t ∷ ts)) → Expression Γ (tuple m ts) + call : ∀ {t m Δ} → Function Δ t → All (Expression Γ) {m} Δ → Expression Γ t if_then_else_ : ∀ {t} → Expression Γ bool → Expression Γ t → Expression Γ t → Expression Γ t data CanAssign {n} {Γ} where - state : ∀ i {i<o : True (i ℕ.<? o)} → CanAssign (state i {i<o}) - var : ∀ i {i<n : True (i ℕ.<? n)} → CanAssign (var i {i<n}) - abort : ∀ {t} {e : Expression Γ (fin 0)} → CanAssign (abort {t = t} e) - _∶_ : ∀ {m n t} {e₁ : Expression Γ (asType t m)} {e₂ : Expression Γ (asType t n)} → CanAssign e₁ → CanAssign e₂ → CanAssign (e₁ ∶ e₂) - [_] : ∀ {t} {e : Expression Γ t} → CanAssign e → CanAssign [ e ] - unbox : ∀ {t} {e : Expression Γ (array t 1)} → CanAssign e → CanAssign (unbox e) - slice : ∀ {i j t} {e₁ : Expression Γ (asType t (i ℕ.+ j))} → CanAssign e₁ → (e₂ : Expression Γ (fin (suc i))) → CanAssign (slice e₁ e₂) - cast : ∀ {i j t} {e : Expression Γ (asType t i)} .(eq : i ≡ j) → CanAssign e → CanAssign (cast eq e) - tup : ∀ {m ts} {es : All (Expression Γ) {m} ts} → All (CanAssign ∘ proj₂) (reduce (λ {x} e → x , e) es) → CanAssign (tup es) + state : ∀ i → CanAssign (state i) + var : ∀ i → CanAssign (var i) + abort : ∀ {t} e → CanAssign (abort {t = t} e) + [_] : ∀ {t e} → CanAssign e → CanAssign ([_] {t = t} e) + unbox : ∀ {t e} → CanAssign e → CanAssign (unbox {t = t} e) + splice : ∀ {m n t e₁ e₂} → CanAssign e₁ → CanAssign e₂ → ∀ e₃ → CanAssign (splice {m = m} {n} {t} e₁ e₂ e₃) + cut : ∀ {m n t e₁} → CanAssign e₁ → ∀ e₂ → CanAssign (cut {m = m} {n} {t} e₁ e₂) + cast : ∀ {i j t e} .(eq : i ≡ j) → CanAssign e → CanAssign (cast {t = t} eq e) + nil : CanAssign nil + cons : ∀ {m t ts e₁ e₂} → CanAssign e₁ → CanAssign e₂ → CanAssign (cons {m = m} {t} {ts} e₁ e₂) + head : ∀ {m t ts e} → CanAssign e → CanAssign (head {m = m} {t} {ts} e) + tail : ∀ {m t ts e} → CanAssign e → CanAssign (tail {m = m} {t} {ts} e) canAssign? (lit x) = no λ () canAssign? (state i) = yes (state i) canAssign? (var i) = yes (var i) - canAssign? (abort e) = yes abort + canAssign? (abort e) = yes (abort e) canAssign? (e ≟ e₁) = no λ () canAssign? (e <? e₁) = no λ () canAssign? (inv e) = no λ () @@ -173,8 +180,8 @@ module Code {o} (Σ : Vec Type o) where canAssign? (e or e₁) = no λ () canAssign? [ e ] = map′ [_] (λ { [ e ] → e }) (canAssign? e) canAssign? (unbox e) = map′ unbox (λ { (unbox e) → e }) (canAssign? e) - canAssign? (e ∶ e₁) = map′ (uncurry _∶_) (λ { (e ∶ e₁) → e , e₁ }) (canAssign? e ×-dec canAssign? e₁) - canAssign? (slice e e₁) = map′ (λ e → slice e e₁) (λ { (slice e e₁) → e }) (canAssign? e) + canAssign? (splice e e₁ e₂) = map′ (λ (e , e₁) → splice e e₁ e₂) (λ { (splice e e₁ _) → e , e₁ }) (canAssign? e ×-dec canAssign? e₁) + canAssign? (cut e e₁) = map′ (λ e → cut e e₁) (λ { (cut e e₁) → e }) (canAssign? e) canAssign? (cast eq e) = map′ (cast eq) (λ { (cast eq e) → e }) (canAssign? e) canAssign? (- e) = no λ () canAssign? (e + e₁) = no λ () @@ -185,38 +192,60 @@ module Code {o} (Σ : Vec Type o) where canAssign? (rnd e) = no λ () canAssign? (fin x e) = no λ () canAssign? (asInt e) = no λ () - canAssign? (tup es) = map′ tup (λ { (tup es) → es }) (canAssignAll? es) + canAssign? nil = yes nil + canAssign? (cons e e₁) = map′ (uncurry cons) (λ { (cons e e₁) → e , e₁ }) (canAssign? e ×-dec canAssign? e₁) + canAssign? (head e) = map′ head (λ { (head e) → e }) (canAssign? e) + canAssign? (tail e) = map′ tail (λ { (tail e) → e }) (canAssign? e) canAssign? (call x e) = no λ () canAssign? (if e then e₁ else e₂) = no λ () - canAssignAll? [] = yes [] - canAssignAll? (e ∷ es) = map′ (uncurry _∷_) (λ { (e ∷ es) → e , es }) (canAssign? e ×-dec canAssignAll? es) - - data AssignsState where - state : ∀ i {i<o} → AssignsState (state i {i<o}) - _∶ˡ_ : ∀ {m n t e₁ e₂ a₁} → AssignsState a₁ → ∀ a₂ → AssignsState (_∶_ {m = m} {n} {t} {e₁} {e₂} a₁ a₂) - _∶ʳ_ : ∀ {m n t e₁ e₂} a₁ {a₂} → AssignsState a₂ → AssignsState (_∶_ {m = m} {n} {t} {e₁} {e₂} a₁ a₂) - [_] : ∀ {t e a} → AssignsState a → AssignsState ([_] {t = t} {e} a) - unbox : ∀ {t e a} → AssignsState a → AssignsState (unbox {t = t} {e} a) - slice : ∀ {i j t e₁ a} → AssignsState a → ∀ e₂ → AssignsState (slice {i = i} {j} {t} {e₁} a e₂) - cast : ∀ {i j t e} .(eq : i ≡ j) {a} → AssignsState a → AssignsState (cast {t = t} {e} eq a) - tup : ∀ {m ts es as} → Any (AssignsState ∘ proj₂) (reduce (λ {x} a → x , a) as) → AssignsState (tup {m = m} {ts} {es} as) - - assignsState? (state i) = yes (state i) - assignsState? (var i) = no λ () - assignsState? abort = no λ () - assignsState? (a ∶ a₁) = map′ [ (_∶ˡ a₁) , (a ∶ʳ_) ]′ (λ { (s ∶ˡ _) → inj₁ s ; (_ ∶ʳ s) → inj₂ s }) (assignsState? a ⊎-dec assignsState? a₁) - assignsState? [ a ] = map′ [_] (λ { [ s ] → s }) (assignsState? a) - assignsState? (unbox a) = map′ unbox (λ { (unbox s) → s }) (assignsState? a) - assignsState? (slice a e₂) = map′ (λ s → slice s e₂ ) (λ { (slice s _) → s }) (assignsState? a) - assignsState? (cast eq a) = map′ (cast eq) (λ { (cast _ s) → s }) (assignsState? a) - assignsState? (tup as) = map′ tup (λ { (tup ss) → ss }) (assignsStateAny? as) - - assignsStateAny? {es = []} [] = no λ () - assignsStateAny? {es = e ∷ es} (a ∷ as) = map′ [ here , there ]′ (λ { (here s) → inj₁ s ; (there ss) → inj₂ ss }) (assignsState? a ⊎-dec assignsStateAny? as) + data ReferencesState where + state : ∀ i → ReferencesState (state i) + [_] : ∀ {t e} → ReferencesState e → ReferencesState ([_] {t = t} e) + unbox : ∀ {t e} → ReferencesState e → ReferencesState (unbox {t = t} e) + spliceˡ : ∀ {m n t e} → ReferencesState e → ∀ e₁ e₂ → ReferencesState (splice {m = m} {n} {t} e e₁ e₂) + spliceʳ : ∀ {m n t} e {e₁} → ReferencesState e₁ → ∀ e₂ → ReferencesState (splice {m = m} {n} {t} e e₁ e₂) + cut : ∀ {m n t e} → ReferencesState e → ∀ e₁ → ReferencesState (cut {m = m} {n} {t} e e₁) + cast : ∀ {i j t} .(eq : i ≡ j) {e} → ReferencesState e → ReferencesState (cast {t = t} eq e) + consˡ : ∀ {m t ts e} → ReferencesState e → ∀ e₁ → ReferencesState (cons {m = m} {t} {ts} e e₁) + consʳ : ∀ {m t ts} e {e₁} → ReferencesState e₁ → ReferencesState (cons {m = m} {t} {ts} e e₁) + head : ∀ {m t ts e} → ReferencesState e → ReferencesState (head {m = m} {t} {ts} e) + tail : ∀ {m t ts e} → ReferencesState e → ReferencesState (tail {m = m} {t} {ts} e) + + referencesState? (lit x) = no λ () + referencesState? (state i) = yes (state i) + referencesState? (var i) = no λ () + referencesState? (abort e) = no λ () + referencesState? (e ≟ e₁) = no λ () + referencesState? (e <? e₁) = no λ () + referencesState? (inv e) = no λ () + referencesState? (e && e₁) = no λ () + referencesState? (e || e₁) = no λ () + referencesState? (not e) = no λ () + referencesState? (e and e₁) = no λ () + referencesState? (e or e₁) = no λ () + referencesState? [ e ] = map′ [_] (λ { [ e ] → e }) (referencesState? e) + referencesState? (unbox e) = map′ unbox (λ { (unbox e) → e }) (referencesState? e) + referencesState? (splice e e₁ e₂) = map′ [ (λ e → spliceˡ e e₁ e₂) , (λ e₁ → spliceʳ e e₁ e₂) ]′ (λ { (spliceˡ e e₁ e₂) → inj₁ e ; (spliceʳ e e₁ e₂) → inj₂ e₁ }) (referencesState? e ⊎-dec referencesState? e₁) + referencesState? (cut e e₁) = map′ (λ e → cut e e₁) (λ { (cut e e₁) → e }) (referencesState? e) + referencesState? (cast eq e) = map′ (cast eq) (λ { (cast eq e) → e }) (referencesState? e) + referencesState? (- e) = no λ () + referencesState? (e + e₁) = no λ () + referencesState? (e * e₁) = no λ () + referencesState? (e ^ x) = no λ () + referencesState? (e >> x) = no λ () + referencesState? (rnd e) = no λ () + referencesState? (fin x e) = no λ () + referencesState? (asInt e) = no λ () + referencesState? nil = no λ () + referencesState? (cons e e₁) = map′ [ (λ e → consˡ e e₁) , (λ e₁ → consʳ e e₁) ]′ (λ { (consˡ e e₁) → inj₁ e ; (consʳ e e₁) → inj₂ e₁ }) (referencesState? e ⊎-dec referencesState? e₁) + referencesState? (head e) = map′ head (λ { (head e) → e }) (referencesState? e) + referencesState? (tail e) = map′ tail (λ { (tail e) → e }) (referencesState? e) + referencesState? (call f es) = no λ () + referencesState? (if e then e₁ else e₂) = no λ () infix 4 _≔_ - infixl 2 if_then_else_ + infixl 2 if_then_else_ if_then_ infixl 1 _∙_ _∙return_ infix 1 _∙end @@ -225,27 +254,30 @@ module Code {o} (Σ : Vec Type o) where skip : Statement Γ _≔_ : ∀ {t} → (ref : Expression Γ t) → {canAssign : True (canAssign? ref)} → Expression Γ t → Statement Γ declare : ∀ {t} → Expression Γ t → Statement (t ∷ Γ) → Statement Γ - invoke : ∀ {m Δ} → Procedure Δ → Expression Γ (tuple m Δ) → Statement Γ + invoke : ∀ {m Δ} → Procedure Δ → All (Expression Γ) {m} Δ → Statement Γ + if_then_ : Expression Γ bool → Statement Γ → Statement Γ if_then_else_ : Expression Γ bool → Statement Γ → Statement Γ → Statement Γ for : ∀ m → Statement (fin m ∷ Γ) → Statement Γ data ChangesState where - _∙ˡ_ : ∀ {s₁} → ChangesState s₁ → ∀ s₂ → ChangesState (s₁ ∙ s₂) - _∙ʳ_ : ∀ s₁ {s₂} → ChangesState s₂ → ChangesState (s₁ ∙ s₂) - _≔_ : ∀ {t ref} canAssign {assignsState : True (assignsState? (toWitness canAssign))} e₂ → ChangesState (_≔_ {t = t} ref {canAssign} e₂) + _∙ˡ_ : ∀ {s} → ChangesState s → ∀ s₁ → ChangesState (s ∙ s₁) + _∙ʳ_ : ∀ s {s₁} → ChangesState s₁ → ChangesState (s ∙ s₁) + _≔_ : ∀ {t} ref {canAssign : True (canAssign? ref)} {refsState : True (referencesState? ref)} e₂ → ChangesState (_≔_ {t = t} ref {canAssign} e₂) declare : ∀ {t} e {s} → ChangesState s → ChangesState (declare {t = t} e s) - invoke : ∀ {m Δ} p e → ChangesState (invoke {m = m} {Δ} p e) - if_then′_else_ : ∀ e {s₁} → ChangesState s₁ → ∀ s₂ → ChangesState (if e then s₁ else s₂) - if_then_else′_ : ∀ e s₁ {s₂} → ChangesState s₂ → ChangesState (if e then s₁ else s₂) + invoke : ∀ {m Δ} p es → ChangesState (invoke {m = m} {Δ} p es) + if_then_ : ∀ e {s} → ChangesState s → ChangesState (if e then s) + if_then′_else_ : ∀ e {s} → ChangesState s → ∀ s₁ → ChangesState (if e then s else s₁) + if_then_else′_ : ∀ e s {s₁} → ChangesState s₁ → ChangesState (if e then s else s₁) for : ∀ m {s} → ChangesState s → ChangesState (for m s) - changesState? (s₁ ∙ s₂) = map′ [ _∙ˡ s₂ , s₁ ∙ʳ_ ]′ (λ { (s ∙ˡ _) → inj₁ s ; (_ ∙ʳ s) → inj₂ s }) (changesState? s₁ ⊎-dec changesState? s₂) - changesState? skip = no λ () - changesState? (_≔_ ref {a} e) = map′ (λ s → _≔_ a {fromWitness s} e) (λ { (_≔_ _ {s} _) → toWitness s }) (assignsState? (toWitness a)) - changesState? (declare e s) = map′ (declare e) (λ { (declare e s) → s }) (changesState? s) - changesState? (invoke p e) = yes (invoke p e) - changesState? (if e then s₁ else s₂) = map′ [ if e then′_else s₂ , if e then s₁ else′_ ]′ (λ { (if _ then′ s else _) → inj₁ s ; (if _ then _ else′ s) → inj₂ s }) (changesState? s₁ ⊎-dec changesState? s₂) - changesState? (for m s) = map′ (for m) (λ { (for m s) → s }) (changesState? s) + changesState? (s ∙ s₁) = map′ [ _∙ˡ s₁ , s ∙ʳ_ ]′ (λ { (s ∙ˡ s₁) → inj₁ s ; (s ∙ʳ s₁) → inj₂ s₁ }) (changesState? s ⊎-dec changesState? s₁) + changesState? skip = no λ () + changesState? (_≔_ ref e) = map′ (λ refsState → _≔_ ref {refsState = fromWitness refsState} e) (λ { (_≔_ ref {refsState = refsState} e) → toWitness refsState }) (referencesState? ref) + changesState? (declare e s) = map′ (declare e) (λ { (declare e s) → s }) (changesState? s) + changesState? (invoke p e) = yes (invoke p e) + changesState? (if e then s) = map′ (if e then_) (λ { (if e then s) → s }) (changesState? s) + changesState? (if e then s else s₁) = map′ [ if e then′_else s₁ , if e then s else′_ ]′ (λ { (if e then′ s else s₁) → inj₁ s ; (if e then s else′ s₁) → inj₂ s₁ }) (changesState? s ⊎-dec changesState? s₁) + changesState? (for m s) = map′ (for m) (λ { (for m s) → s }) (changesState? s) data Function Γ ret where _∙return_ : (s : Statement Γ) → {False (changesState? s)} → Expression Γ ret → Function Γ ret @@ -253,36 +285,45 @@ module Code {o} (Σ : Vec Type o) where data Procedure Γ where _∙end : Statement Γ → Procedure Γ - declare : ∀ {t} → Expression Γ t → Procedure (t ∷ Γ) → Procedure Γ infixl 6 _<<_ - infixl 5 _-_ + infixl 5 _-_ _∶_ + + tup : ∀ {n Γ m ts} → All (Expression {n} Γ) ts → Expression Γ (tuple m ts) + tup [] = nil + tup (e ∷ es) = cons e (tup es) + + _∶_ : ∀ {n Γ i j t} → Expression {n} Γ (asType t j) → Expression Γ (asType t i) → Expression Γ (asType t (i ℕ.+ j)) + e₁ ∶ e₂ = splice e₁ e₂ (lit (Fin.fromℕ _ ′f)) + + slice : ∀ {n Γ i j t} → Expression {n} Γ (asType t (i ℕ.+ j)) → Expression Γ (fin (suc i)) → Expression Γ (asType t j) + slice e₁ e₂ = head (cut e₁ e₂) slice′ : ∀ {n Γ i j t} → Expression {n} Γ (asType t (i ℕ.+ j)) → Expression Γ (fin (suc j)) → Expression Γ (asType t i) slice′ {i = i} e₁ e₂ = slice (cast (+-comm i _) e₁) e₂ - _-_ : ∀ {n Γ t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression {n} Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ {isNumeric₁} {isNumeric₂}) + _-_ : ∀ {n Γ t₁ t₂} {isNumeric₁ : True (isNumeric? t₁)} {isNumeric₂ : True (isNumeric? t₂)} → Expression {n} Γ t₁ → Expression Γ t₂ → Expression Γ (combineNumeric t₁ t₂ isNumeric₁ isNumeric₂) _-_ {isNumeric₂ = isNumeric₂} x y = x + (-_ {isNumeric = isNumeric₂} y) _<<_ : ∀ {n Γ} → Expression {n} Γ int → ℕ → Expression Γ int x << n = rnd (x * lit (2 ′r) ^ n) get : ∀ {n Γ} → ℕ → Expression {n} Γ int → Expression Γ bit - get i x = if x - x >> suc i << suc i <? lit (2 ′i) ^ i then lit ((false ∷ []) ′x) else lit ((true ∷ []) ′x) + get i x = if x - x >> suc i << suc i <? lit (2 ′i) ^ i then lit (false ′x) else lit (true ′x) uint : ∀ {n Γ m} → Expression {n} Γ (bits m) → Expression Γ int uint {m = zero} x = lit (0 ′i) uint {m = suc m} x = - lit (2 ′i) * uint {m = m} (slice x (lit ((# 1) ′f))) + - ( if slice′ x (lit ((# 0) ′f)) ≟ lit ((true ∷ []) ′x) + lit (2 ′i) * uint {m = m} (slice x (lit (1F ′f))) + + ( if slice′ x (lit (0F ′f)) ≟ lit ((true ∷ []) ′xs) then lit (1 ′i) else lit (0 ′i)) sint : ∀ {n Γ m} → Expression {n} Γ (bits m) → Expression Γ int sint {m = zero} x = lit (0 ′i) - sint {m = suc zero} x = if x ≟ lit ((true ∷ []) ′x) then - lit (1 ′i) else lit (0 ′i) + sint {m = suc zero} x = if x ≟ lit ((true ∷ []) ′xs) then - lit (1 ′i) else lit (0 ′i) sint {m = suc (suc m)} x = - lit (2 ′i) * sint (slice {i = 1} x (lit ((# 1) ′f))) + - ( if slice′ x (lit ((# 0) ′f)) ≟ lit ((true ∷ []) ′x) + lit (2 ′i) * sint (slice {i = 1} x (lit (1F ′f))) + + ( if slice′ x (lit (0F ′f)) ≟ lit ((true ∷ []) ′xs) then lit (1 ′i) else lit (0 ′i)) |